請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46055完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳瑞芬(Ruei-Feng Chen) | |
| dc.contributor.author | Hung-Chi Lu | en |
| dc.contributor.author | 呂泓旂 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:52:32Z | - |
| dc.date.available | 2013-08-03 | |
| dc.date.copyright | 2010-08-03 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-30 | |
| dc.identifier.citation | Akk G, Steinbach JH (2000) Activation and block of recombinant GABA(A) receptors by pentobarbitone: a single-channel study. Br J Pharmacol 130:249-258.
Ali AB, Thomson AM (2008) Synaptic alpha 5 subunit-containing GABAA receptors mediate IPSPs elicited by dendrite-preferring cells in rat neocortex. Cereb Cortex 18:1260-1271. Ariwodola OJ, Weiner JL (2004) Ethanol potentiation of GABAergic synaptic transmission may be self-limiting: role of presynaptic GABA(B) receptors. J Neurosci 24:10679-10686. Bai D, Zhu G, Pennefather P, Jackson MF, MacDonald JF, Orser BA (2001) Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by gamma-aminobutyric acid(A) receptors in hippocampal neurons. Mol Pharmacol 59:814-824. Bajic D, Proudfit HK (1999) Projections of neurons in the periaqueductal gray to pontine and medullary catecholamine cell groups involved in the modulation of nociception. J Comp Neurol 405:359-379. Bajic D, Van Bockstaele EJ, Proudfit HK (2001) Ultrastructural analysis of ventrolateral periaqueductal gray projections to the A7 catecholamine cell group. Neuroscience 104:181-197. Banks MI, Pearce RA (2000) Kinetic differences between synaptic and extrasynaptic GABA(A) receptors in CA1 pyramidal cells. J Neurosci 20:937-948. Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, Langer SZ (1998) International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 50:291-313. Belujon P, Baufreton J, Grandoso L, Boue-Grabot E, Batten TF, Ugedo L, Garret M, Taupignon AI (2009) Inhibitory transmission in locus coeruleus neurons expressing GABAA receptor epsilon subunit has a number of unique properties. J Neurophysiol 102:2312-2325. Bettler B, Tiao JY (2006) Molecular diversity, trafficking and subcellular localization of GABAB receptors. Pharmacol Ther 110:533-543. Bieger D, Hopkins DA (1987) Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J Comp Neurol 262:546-562. Birnir B, Everitt AB, Lim MS, Gage PW (2000) Spontaneously opening GABA(A) channels in CA1 pyramidal neurones of rat hippocampus. J Membr Biol 174:21-29. Bouairi E, Kamendi H, Wang X, Gorini C, Mendelowitz D (2006) Multiple types of GABAA receptors mediate inhibition in brain stem parasympathetic cardiac neurons in the nucleus ambiguus. J Neurophysiol 96:3266-3272. Brickley SG, Cull-Candy SG, Farrant M (1996) Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol 497 ( Pt 3):753-759. Brickley SG, Revilla V, Cull-Candy SG, Wisden W, Farrant M (2001) Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature 409:88-92. Brunig I, Scotti E, Sidler C, Fritschy JM (2002) Intact sorting, targeting, and clustering of gamma-aminobutyric acid A receptor subtypes in hippocampal neurons in vitro. J Comp Neurol 443:43-55. Burgard EC, Tietz EI, Neelands TR, Macdonald RL (1996) Properties of recombinant gamma-aminobutyric acid A receptor isoforms containing the alpha 5 subunit subtype. Mol Pharmacol 50:119-127. Cabot JB, Carroll J, Bogan N (1991) Localization of cardiac parasympathetic preganglionic neurons in the medulla oblongata of pigeon, Columba livia: a study using fragment C of tetanus toxin. Brain Res 544:162-168. Caraiscos VB, Elliott EM, You-Ten KE, Cheng VY, Belelli D, Newell JG, Jackson MF, Lambert JJ, Rosahl TW, Wafford KA, MacDonald JF, Orser BA (2004) Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A 101:3662-3667. Casula MA, Bromidge FA, Pillai GV, Wingrove PB, Martin K, Maubach K, Seabrook GR, Whiting PJ, Hadingham KL (2001) Identification of amino acid residues responsible for the alpha5 subunit binding selectivity of L-655,708, a benzodiazepine binding site ligand at the GABA(A) receptor. J Neurochem 77:445-451. Chadderton P, Margrie TW, Hausser M (2004) Integration of quanta in cerebellar granule cells during sensory processing. Nature 428:856-860. Chen CC, Zimmer A, Sun WH, Hall J, Brownstein MJ (2002) A role for ASIC3 in the modulation of high-intensity pain stimuli. Proc Natl Acad Sci U S A 99:8992-8997. Chen YH, Hou LL, Wang JJ (2008) 5-HT1A/7 receptor agonist excites cardiac vagal neurons via inhibition of both GABAergic and glycinergic inputs. Acta Pharmacol Sin 29:529-538. Clark FM, Proudfit HK (1991a) The projection of noradrenergic neurons in the A7 catecholamine cell group to the spinal cord in the rat demonstrated by anterograde tracing combined with immunocytochemistry. Brain Res 547:279-288. Clark FM, Proudfit HK (1991b) Projections of neurons in the ventromedial medulla to pontine catecholamine cell groups involved in the modulation of nociception. Brain Res 540:105-115. Comer AM, Gibbons HM, Qi J, Kawai Y, Win J, Lipski J (1999) Detection of mRNA species in bulbospinal neurons isolated from the rostral ventrolateral medulla using single-cell RT-PCR. Brain Res Brain Res Protoc 4:367-377. Cottrell GA, Lambert JJ, Peters JA (1987) Modulation of GABAA receptor activity by alphaxalone. Br J Pharmacol 90:491-500. Couve A, Moss SJ, Pangalos MN (2000) GABAB receptors: a new paradigm in G protein signaling. Mol Cell Neurosci 16:296-312. Danzebrink RM, Gebhart GF (1990) Antinociceptive effects of intrathecal adrenoceptor agonists in a rat model of visceral nociception. J Pharmacol Exp Ther 253:698-705. Dart RC (2001) The use and effect of analgesics in patients who regularly drink alcohol. Am J Manag Care 7:S597-601. Davies PA, Kirkness EF, Hales TG (2001) Evidence for the formation of functionally distinct alphabetagammaepsilon GABA(A) receptors. J Physiol 537:101-113. Dergacheva O, Griffioen KJ, Wang X, Kamendi H, Gorini C, Mendelowitz D (2007) 5-HT(2) receptor subtypes mediate different long-term changes in GABAergic activity to parasympathetic cardiac vagal neurons in the nucleus ambiguus. Neuroscience 149:696-705. Essrich C, Lorez M, Benson JA, Fritschy JM, Luscher B (1998) Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. Nat Neurosci 1:563-571. Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6:215-229. Feldman JL, Ellenberger HH (1988) Central coordination of respiratory and cardiovascular control in mammals. Annu Rev Physiol 50:593-606. Fritschy JM, Brunig I (2003) Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. Pharmacol Ther 98:299-323. Fritschy JM, Johnson DK, Mohler H, Rudolph U (1998) Independent assembly and subcellular targeting of GABA(A)-receptor subtypes demonstrated in mouse hippocampal and olfactory neurons in vivo. Neurosci Lett 249:99-102. Gao H, Smith BN (2010) Tonic GABAA receptor-mediated inhibition in the rat dorsal motor nucleus of the vagus. J Neurophysiol 103:904-914. Gaspary HL, Wang W, Richerson GB (1998) Carrier-mediated GABA release activates GABA receptors on hippocampal neurons. J Neurophysiol 80:270-281. Glykys J, Mody I (2007) The main source of ambient GABA responsible for tonic inhibition in the mouse hippocampus. J Physiol 582:1163-1178. Glykys J, Peng Z, Chandra D, Homanics GE, Houser CR, Mody I (2007) A new naturally occurring GABA(A) receptor subunit partnership with high sensitivity to ethanol. Nat Neurosci 10:40-48. Griffioen KJ, Venkatesan P, Huang ZG, Wang X, Bouairi E, Evans C, Gold A, Mendelowitz D (2004) Fentanyl inhibits GABAergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Brain Res 1007:109-115. Gunther U, Benson J, Benke D, Fritschy JM, Reyes G, Knoflach F, Crestani F, Aguzzi A, Arigoni M, Lang Y, et al. (1995) Benzodiazepine-insensitive mice generated by targeted disruption of the gamma 2 subunit gene of gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A 92:7749-7753. Hadingham KL, Wingrove P, Le Bourdelles B, Palmer KJ, Ragan CI, Whiting PJ (1993) Cloning of cDNA sequences encoding human alpha 2 and alpha 3 gamma-aminobutyric acidA receptor subunits and characterization of the benzodiazepine pharmacology of recombinant alpha 1-, alpha 2-, alpha 3-, and alpha 5-containing human gamma-aminobutyric acidA receptors. Mol Pharmacol 43:970-975. Holden JE, Proudfit HK (1998) Enkephalin neurons that project to the A7 catecholamine cell group are located in nuclei that modulate nociception: ventromedial medulla. Neuroscience 83:929-947. Hopkins DA, Armour JA (1982) Medullary cells of origin of physiologically identified cardiac nerves in the dog. Brain Res Bull 8:359-365. Hopkins DA, Gootman PM, Gootman N, Di Russo SM, Zeballos ME (1984) Brainstem cells of origin of the cervical vagus and cardiopulmonary nerves in the neonatal pig (Sus scrofa). Brain Res 306:63-72. Huang SJ, Yang WS, Lin YW, Wang HC, Chen CC (2008) Increase of insulin sensitivity and reversal of age-dependent glucose intolerance with inhibition of ASIC3. Biochem Biophys Res Commun 371:729-734. Irnaten M, Walwyn WM, Wang J, Venkatesan P, Evans C, Chang KS, Andresen MC, Hales TG, Mendelowitz D (2002) Pentobarbital enhances GABAergic neurotransmission to cardiac parasympathetic neurons, which is prevented by expression of GABA(A) epsilon subunit. Anesthesiology 97:717-724. Isaacson JS, Solis JM, Nicoll RA (1993) Local and diffuse synaptic actions of GABA in the hippocampus. Neuron 10:165-175. Jia F, Chandra D, Homanics GE, Harrison NL (2008) Ethanol modulates synaptic and extrasynaptic GABAA receptors in the thalamus. J Pharmacol Exp Ther 326:475-482. Jones SL (1991) Descending noradrenergic influences on pain. Prog Brain Res 88:381-394. Kamendi H, Dergacheva O, Wang X, Huang ZG, Bouairi E, Gorini C, Mendelowitz D (2006) NO differentially regulates neurotransmission to premotor cardiac vagal neurons in the nucleus ambiguus. Hypertension 48:1137-1142. Korpi ER, Grunder G, Luddens H (2002) Drug interactions at GABA(A) receptors. Prog Neurobiol 67:113-159. Kullmann DM, Ruiz A, Rusakov DM, Scott R, Semyanov A, Walker MC (2005) Presynaptic, extrasynaptic and axonal GABAA receptors in the CNS: where and why? Prog Biophys Mol Biol 87:33-46. Kuraishi Y, Hirota N, Satoh M, Takagi H (1985) Antinociceptive effects of intrathecal opioids, noradrenaline and serotonin in rats: mechanical and thermal algesic tests. Brain Res 326:168-171. Kwiat GC, Basbaum AI (1992) The origin of brainstem noradrenergic and serotonergic projections to the spinal cord dorsal horn in the rat. Somatosens Mot Res 9:157-173. Lerma J, Herranz AS, Herreras O, Abraira V, Martin del Rio R (1986) In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res 384:145-155. Liang J, Suryanarayanan A, Abriam A, Snyder B, Olsen RW, Spigelman I (2007) Mechanisms of reversible GABAA receptor plasticity after ethanol intoxication. J Neurosci 27:12367-12377. Lipski J, Kawai Y, Qi J, Comer A, Win J (1998) Whole cell patch-clamp study of putative vasomotor neurons isolated from the rostral ventrolateral medulla. Am J Physiol 274:R1099-1110. Liu QY, Schaffner AE, Chang YH, Maric D, Barker JL (2000) Persistent activation of GABA(A) receptor/Cl(-) channels by astrocyte-derived GABA in cultured embryonic rat hippocampal neurons. J Neurophysiol 84:1392-1403. Maksay G, Thompson SA, Wafford KA (2003) The pharmacology of spontaneously open alpha 1 beta 3 epsilon GABA A receptor-ionophores. Neuropharmacology 44:994-1002. McCartney MR, Deeb TZ, Henderson TN, Hales TG (2007) Tonically active GABAA receptors in hippocampal pyramidal neurons exhibit constitutive GABA-independent gating. Mol Pharmacol 71:539-548. McKernan RM, Whiting PJ (1996) Which GABAA-receptor subtypes really occur in the brain? Trends Neurosci 19:139-143. Mendelowitz D (1996) Firing properties of identified parasympathetic cardiac neurons in nucleus ambiguus. Am J Physiol 271:H2609-2614. Mendelowitz D (1999) Advances in Parasympathetic Control of Heart Rate and Cardiac Function. News Physiol Sci 14:155-161. Min MY, Wu YW, Shih PY, Lu HW, Lin CC, Wu Y, Li MJ, Yang HW (2008) Physiological and morphological properties of, and effect of substance P on, neurons in the A7 catecholamine cell group in rats. Neuroscience 153:1020-1033. Mody I (2008) Extrasynaptic GABAA receptors in the crosshairs of hormones and ethanol. Neurochem Int 52:60-64. Mody I, Pearce RA (2004) Diversity of inhibitory neurotransmission through GABA(A) receptors. Trends Neurosci 27:569-575. Mody I, Glykys J, Wei W (2007) A new meaning for 'Gin & Tonic': tonic inhibition as the target for ethanol action in the brain. Alcohol 41:145-153. Mohler H, Fritschy JM, Rudolph U (2002) A new benzodiazepine pharmacology. J Pharmacol Exp Ther 300:2-8. Munakata M, Jin YH, Akaike N, Nielsen M (1998) Temperature-dependent effect of zolpidem on the GABAA receptor-mediated response at recombinant human GABAA receptor subtypes. Brain Res 807:199-202. Neelands TR, Fisher JL, Bianchi M, Macdonald RL (1999) Spontaneous and gamma-aminobutyric acid (GABA)-activated GABA(A) receptor channels formed by epsilon subunit-containing isoforms. Mol Pharmacol 55:168-178. Neff RA, Mihalevich M, Mendelowitz D (1998) Stimulation of NTS activates NMDA and non-NMDA receptors in rat cardiac vagal neurons in the nucleus ambiguus. Brain Res 792:277-282. Nicoll RA, Wojtowicz JM (1980) The effects of pentobarbital and related compounds on frog motoneurons. Brain Res 191:225-237. Nosaka S, Yamamoto T, Yasunaga K (1979) Localization of vagal cardioinhibitory preganglionic neurons with rat brain stem. J Comp Neurol 186:79-92. Nuseir K, Proudfit HK (2000) Bidirectional modulation of nociception by GABA neurons in the dorsolateral pontine tegmentum that tonically inhibit spinally projecting noradrenergic A7 neurons. Neuroscience 96:773-783. Nusser Z, Mody I (2002) Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells. J Neurophysiol 87:2624-2628. Nusser Z, Sieghart W, Somogyi P (1998) Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci 18:1693-1703. Olsen RW, Tobin AJ (1990) Molecular biology of GABAA receptors. FASEB J 4:1469-1480. Overland AC, Kitto KF, Chabot-Dore AJ, Rothwell PE, Fairbanks CA, Stone LS, Wilcox GL (2009) Protein kinase C mediates the synergistic interaction between agonists acting at alpha2-adrenergic and delta-opioid receptors in spinal cord. J Neurosci 29:13264-13273. Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABA(A) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101:815-850. Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PR, Seeburg PH (1989) Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338:582-585. Puia G, Vicini S, Seeburg PH, Costa E (1991) Influence of recombinant gamma-aminobutyric acid-A receptor subunit composition on the action of allosteric modulators of gamma-aminobutyric acid-gated Cl- currents. Mol Pharmacol 39:691-696. Reddy SV, Yaksh TL (1980) Spinal noradrenergic terminal system mediates antinociception. Brain Res 189:391-401. Rossi DJ, Hamann M (1998) Spillover-mediated transmission at inhibitory synapses promoted by high affinity alpha6 subunit GABA(A) receptors and glomerular geometry. Neuron 20:783-795. Rudolph U, Mohler H (2004) Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annu Rev Pharmacol Toxicol 44:475-498. Salin PA, Prince DA (1996) Spontaneous GABAA receptor-mediated inhibitory currents in adult rat somatosensory cortex. J Neurophysiol 75:1573-1588. Sanna E, Busonero F, Talani G, Carta M, Massa F, Peis M, Maciocco E, Biggio G (2002) Comparison of the effects of zaleplon, zolpidem, and triazolam at various GABA(A) receptor subtypes. Eur J Pharmacol 451:103-110. Santhakumar V, Wallner M, Otis TS (2007) Ethanol acts directly on extrasynaptic subtypes of GABAA receptors to increase tonic inhibition. Alcohol 41:211-221. Scimemi A, Semyanov A, Sperk G, Kullmann DM, Walker MC (2005) Multiple and plastic receptors mediate tonic GABAA receptor currents in the hippocampus. J Neurosci 25:10016-10024. Semyanov A (2003) Cell type specificity of GABA(A) receptor mediated signaling in the hippocampus. Curr Drug Targets CNS Neurol Disord 2:240-247. Semyanov A, Walker MC, Kullmann DM (2003) GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nat Neurosci 6:484-490. Semyanov A, Walker MC, Kullmann DM, Silver RA (2004) Tonically active GABA A receptors: modulating gain and maintaining the tone. Trends Neurosci 27:262-269. Sieghart W, Sperk G (2002) Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr Top Med Chem 2:795-816. Simon J, Wakimoto H, Fujita N, Lalande M, Barnard EA (2004) Analysis of the set of GABA(A) receptor genes in the human genome. J Biol Chem 279:41422-41435. Spencer SE, Sawyer WB, Wada H, Platt KB, Loewy AD (1990) CNS projections to the pterygopalatine parasympathetic preganglionic neurons in the rat: a retrograde transneuronal viral cell body labeling study. Brain Res 534:149-169. Stell BM, Mody I (2002) Receptors with different affinities mediate phasic and tonic GABA(A) conductances in hippocampal neurons. J Neurosci 22:RC223. Stell BM, Brickley SG, Tang CY, Farrant M, Mody I (2003) Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proc Natl Acad Sci U S A 100:14439-14444. Sugimoto T, Itoh K, Mizuno N, Nomura S, Konishi A (1979) The site of origin of cardiac preganglionic fibers of the vagus nerve: an HRP study in the cat. Neurosci Lett 12:53-58. Takahashi A, Mashimo T, Uchida I (2006) GABAergic tonic inhibition of substantia gelatinosa neurons in mouse spinal cord. Neuroreport 17:1331-1335. Takanaga A, Hayakawa T, Tanaka K, Kawabata K, Maeda S, Seki M (2003) Immunohistochemical characterization of cardiac vagal preganglionic neurons in the rat. Auton Neurosci 106:132-137. Takano Y, Yaksh TL (1992) Characterization of the pharmacology of intrathecally administered alpha-2 agonists and antagonists in rats. J Pharmacol Exp Ther 261:764-772. Taylor EW, Jordan D, Coote JH (1999) Central control of the cardiovascular and respiratory systems and their interactions in vertebrates. Physiol Rev 79:855-916. Townend JN, Littler WA (1995) Cardiac vagal activity: a target for intervention in heart disease. Lancet 345:937-938. Vautrin J, Maric D, Sukhareva M, Schaffner AE, Barker JL (2000) Surface-accessible GABA supports tonic and quantal synaptic transmission. Synapse 37:38-55. Volgin DV, Swan J, Kubin L (2004) Single-cell RT-PCR gene expression profiling of acutely dissociated and immunocytochemically identified central neurons. J Neurosci Methods 136:229-236. Wafford KA (2005) GABAA receptor subtypes: any clues to the mechanism of benzodiazepine dependence? Curr Opin Pharmacol 5:47-52. Wagner DA, Goldschen-Ohm MP, Hales TG, Jones MV (2005) Kinetics and spontaneous open probability conferred by the epsilon subunit of the GABAA receptor. J Neurosci 25:10462-10468. Wallner M, Hanchar HJ, Olsen RW (2003) Ethanol enhances alpha 4 beta 3 delta and alpha 6 beta 3 delta gamma-aminobutyric acid type A receptors at low concentrations known to affect humans. Proc Natl Acad Sci U S A 100:15218-15223. Wang J, Irnaten M, Mendelowitz D (2001a) Characteristics of spontaneous and evoked GABAergic synaptic currents in cardiac vagal neurons in rats. Brain Res 889:78-83. Wang J, Irnaten M, Neff RA, Venkatesan P, Evans C, Loewy AD, Mettenleiter TC, Mendelowitz D (2001b) Synaptic and neurotransmitter activation of cardiac vagal neurons in the nucleus ambiguus. Ann N Y Acad Sci 940:237-246. Wei W, Faria LC, Mody I (2004) Low ethanol concentrations selectively augment the tonic inhibition mediated by delta subunit-containing GABAA receptors in hippocampal neurons. J Neurosci 24:8379-8382. Wei W, Zhang N, Peng Z, Houser CR, Mody I (2003) Perisynaptic localization of delta subunit-containing GABA(A) receptors and their activation by GABA spillover in the mouse dentate gyrus. J Neurosci 23:10650-10661. Westlund KN, Coulter JD (1980) Descending projections of the locus coeruleus and subcoeruleus/medial parabrachial nuclei in monkey: axonal transport studies and dopamine-beta-hydroxylase immunocytochemistry. Brain Res 2:235-264. Wohlfarth KM, Bianchi MT, Macdonald RL (2002) Enhanced neurosteroid potentiation of ternary GABA(A) receptors containing the delta subunit. J Neurosci 22:1541-1549. Yamada J, Furukawa T, Ueno S, Yamamoto S, Fukuda A (2007) Molecular basis for the GABAA receptor-mediated tonic inhibition in rat somatosensory cortex. Cereb Cortex 17:1782-1787. Yeung JY, Canning KJ, Zhu G, Pennefather P, MacDonald JF, Orser BA (2003) Tonically activated GABAA receptors in hippocampal neurons are high-affinity, low-conductance sensors for extracellular GABA. Mol Pharmacol 63:2-8. Yuan BX, Ardell JL, Hopkins DA, Losier AM, Armour JA (1994) Gross and microscopic anatomy of the canine intrinsic cardiac nervous system. Anat Rec 239:75-87. Zhang N, Wei W, Mody I, Houser CR (2007) Altered localization of GABA(A) receptor subunits on dentate granule cell dendrites influences tonic and phasic inhibition in a mouse model of epilepsy. J Neurosci 27:7520-7531. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46055 | - |
| dc.description.abstract | 越來越多的研究成果顯示受γ-胺基丁酸(GABA)活化的突觸外圍之γ-胺基丁酸受體(GABAARs)會對所位在的神經元有持續性抑制的作用,並控制此神經元的興奮性。位在疑核(NA)的心臟迷走神經元(CVNs)是控制心跳的主要動作神經元;而分泌正腎上腺素的A7核區兒茶酚胺神經元(A7 neurons)會透過在脊索神經背角釋放正腎上腺素(NA)來調節痛覺的敏感度,綜多研究也顯示出GABA在控制CVNs (來自孤束核(NTS))及A7 neurons (來自分泌GABA之周邊中間神經元)的興奮性上是扮演重要的角色的,且這些神經元是接受非常強烈之釋放GABA的神經傳入影響。在CVNs和A7 neurons上除了有負責調控即效姓抑制的GABAARs與甘胺酸受體(GlyRs)之外,還有處於突觸外圍負責調控持續性抑制的GABAARs存在,這本篇論文中,我們想要更進一步辨認並比較在CVNs和A7 neurons上到底是由哪些GABAARs次單元組成來調節持續性抑制作用的。首先我們把逆向螢光追蹤染劑施打在大鼠(7~10天大)的圍心膜內側,經過約48小時的術後回復後就把腦幹做冠狀切面,然後在螢光顯微鏡下找到這些被螢光標訂的CVNs,做完電生理實驗後就用玻璃電極把細胞吸起,而後將其溶解並使用Nanoprep Kit來抽取它們的mRNA,經歷過標準的單細胞逆轉錄聚合酶鏈反應(single-cell RT-PCR)程序後即可分析它們GABAARs次單元表現情況。A7 neurons的實驗程序也是跟CVNs一樣的,它們坐落在大鼠(7~10天大)腦幹矢狀切面之三叉動作神經核(Mo5)約200 μm的前方並擁有蠻大的細胞本體(直徑約20 μm)。先前就有研究指出有功能的突觸外圍GABAARs可能是由α1、α5、γ1、γ2、δ或ε次單元所組成,所以我們就檢驗這些次單元在兩種神經元上的表現情形,並進一步分析收集到的總共77個被螢光標記的CVNs及33個A7 neurons的GABAARs次單元組成,其中只有35個CVNs與27個A7 neurons各別同時表現了膽鹼乙醯轉移酶(CAT)和多巴胺β羥化酶(DBH)兩種細胞標誌蛋白。在所有CVNs裡,α1次單元是被偵測到最多的,α5、γ1、γ2和ε次單元的表現量次之,而δ次單元的量是最稀少的;這結果與A7 neurons有些相似,不過其γ2次單元的表現量也非常高。以上結果同樣地與我們的電生理實驗數據相符,GABAARs在兩種神經元上所調控的持續姓抑制電流都可被zolpidem (α1、γ次單元的協同劑)強化,並皆能被picrotoxin (GABAARs抑制劑)所阻礙,而在受α5、δ次單元協同劑的影響下電流並沒有顯著的變化,總而言之,這些結果說明了α1次單元在調節CVNs與A7 neurons之GABAARs的持續姓抑制作用上扮演了一關鍵性的角色。 | zh_TW |
| dc.description.abstract | A growing number of reports have demonstrated that GABA acting on extrasynaptic GABAA receptors (GABAARs) exerts strong tonic inhibition in the target neurons, thereby controls the neuronal excitability. The cardiac vagal neurons (CVNs) in nucleus ambiguus (NA) is the principal motor neurons that control hart rate, and the noradrenergic (NAergic) A7 neurons are involved in modulating nociception by releasing noradrenaline in the dorsal spinal cord. It is proposed that GABA plays an important role in control excitability of CVNs (from NTS) and A7 neurons (from local GABAergic interneurons), these neurons receive very strong GABAergic inputs. In addition to phasic inhibitions mediated by GABAA and glycine receptors, evidences for existence of extrasynaptic GABAAR-mediated tonic inhibition in CVNs and A7 neurons have been provided. In this study, I wish to further characterize and compare what subunits of GABAARs are responsible to tonic GABAARs mediated current in these two nucleus. CVNs were retrograde-labeled by fluorescent tracer applied to pericardiac cavity in rats (P7-10 days). After surgery, the animals were allowed to survive for 48 hours and the transverse brainstem slices were cut. The fluorescent labeled CVNs were searched under fluorescent microscope and picked up by a grass pipette after electrophysiological experiments. They were lysed and the mRNA was extracted using Nanoprep Kit. Standard RT-PCR procedures were employed for analysis of expression profile of GABAAR subunits in CVNs. The procedure of A7 neurons were same as CVNs. They had a large somata diameter (~20 μm) located ~200 μm rostral to the trigeminal motor nucleus (the presumed A7 area) in sagittal brainstem slices in rats (P7-10 days). Since it has been reported that functional extrasynaptic GABAARs may consist of α1, α5, δ, γ1, γ2, and ε subunit, expression of these subunits was examined in both neurons. A total number of 77 fluorescent labeled CVNs and 33 A7 neurons were collected and subjected to GABAARs analysis. Only 35 of CVNs and 27 of A7 neurons expressed cholineacetyltransferase (ChAT) and dopamine beta-hydroxylase (DBH). In all of the CVNs, α1 subunits were detected mostly, α5, γ1, γ2, ε but less the δ subunits were also detected. The results of A7 neurons were similar as CVNs but the expression of γ2 subunits were also abundant. These results are consistent with our previously electrophysiological results, in which picrotoxin sensitive tonic GABAAR current was enhanced by zolpidem, an α1 and γ subunit agonist, and not by drug acting at α5 or δ subunits. Taken together, the present results suggest a role for α1 subunit in mediating tonic GABAAR-mediated inhibition in CVNs and A7 neurons. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:52:32Z (GMT). No. of bitstreams: 1 ntu-99-R97b41002-1.pdf: 1905276 bytes, checksum: f60ae21b8cf5b41d8f319b26c2f98e22 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Content:
口試委員審定書...........................................II 致謝.....................................................III 中文摘要.................................................VII Abstract..................................................IX Content...................................................XI Introduction...............................................1 Cardiac Vagal Neurons in Nucleus Ambiguus………………………1 Noradrenergic (NAergic) A7 neurons………………………………3 GABAA Receptor…………………………………………………………6 Objectives………………………………………………………………9 Materials and Methods.....................................10 Fluorescent Labeling of CVNs and Medullary Slice Preparation……………………………………………………………10 Visualization of CVNs, A7 neurons and Whole-Cell Patch Clamp Recording………………………………………………………11 Drug………………………………………………………………………13 Data analysis…………………………………………………………13 Single-cell RT-PCR……………………………………………………14 Perfusion and Tissue processing…………………………………16 Immunohistochemistry and Recording neurons identification16 Results...................................................18 Identification and recording of cholinergic CVNs in NA....18 Identification and recording of noradrenergic (NAergic) neurons in A7 area……………………………………………………20 Tonic inhibition in CVNs and A7 neurons………………………20 The subunits of the GABAARs evoking the tonic current……23 The results of single cell RT–PCR analyses…………………26 Discussion................................................31 Tonic inhibition in CVNs and A7 neurons………………………32 δ subunit-containing GABAARs were not expressed in CVNs and A7 neurons…………………………………………………………………34 α1 and γ subunit-containing GABAARs contributed the tonic inhibition………………………………………………………………36 The role of α5 subunit-containing GABAARs…………………………………………………………………38 ε subunit-containing GABAARs might contributed the tonic inhibition………………………………………………………………39 GABAAR-α1 subunit and α1βγ1/2 subunit composition expressed the most amount of mRNA than other subunits and subunit compositions…………………………………………………40 References...............................................44 Figures...................................................64 Fig. 1. Identification of cholinergic CVNs with retrograde fluorescent tracer....................................................64 Fig. 2. Identification and recording of noradrenergic (NAergic) neurons in A7 area. ……………………………………66 Fig. 3. GABAergic tonic inhibition existed in CVNs and A7 neurons…………………………………………………………………68 Fig. 4. NAergic A7 neurons are subject to tonic inhibition by GABAARs………………………………………………………………70 Fig. 5. It was α1γ subunit, not other subunits, contributing to tonic current of GABAARs in A7 neurons……72 Fig. 6. It was α1γ subunit, not δ subunit, contributing to tonic current of GABAARs in CVNs……………………………74 Fig. 7. Representative single-cell RT-PCR analyses from 10 CVNs and 5 A7 neurons………………………………………………76 Table 1. Summary results from single cell RT–PCR analyses of 77 CVNs and 27 A7 neurons………………………………………78 Fig. 8. Summarized RT-PCR results showing the expression profile of GABAAR subtypes for 77 CVNs and 27 A7 neurons…80 Fig. 9. The predictive distributions of GABAAR subunit compositions in CVNs and A7 neurons……………………………82 | |
| dc.language.iso | en | |
| dc.subject | 持續性抑制作用 | zh_TW |
| dc.subject | 止痛作用 | zh_TW |
| dc.subject | 心血管功能 | zh_TW |
| dc.subject | 保持電流(Ihold) | zh_TW |
| dc.subject | 疑核 | zh_TW |
| dc.subject | nnucleus ambiguus | en |
| dc.subject | cardiovascular function | en |
| dc.subject | antinociception | en |
| dc.subject | tonic inhibition | en |
| dc.subject | holding current (Ihold) | en |
| dc.title | 利用單細胞RT-PCR與電生理方法研究分析大鼠之迷走神經元與A7核區兒茶酚胺神經元的突觸外γ-胺基丁酸受體 | zh_TW |
| dc.title | The role of Extrasynaptic GABAA receptor in Cardiac Vagal Neurons and A7 Catecholamine Cell groups in Rats: A Single-Cell RT-PCR and Whole-Cell Patch Clamp Recording study | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 閔明源(Ming-Yuan Min),陳志成(Chih-Cheng Chen),楊琇雯(Hsiu-Wen Yang) | |
| dc.subject.keyword | 止痛作用,心血管功能,保持電流(Ihold),疑核,持續性抑制作用, | zh_TW |
| dc.subject.keyword | antinociception,cardiovascular function,holding current (Ihold),nnucleus ambiguus,tonic inhibition, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-02 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 1.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
