Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46047
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳林祈(Lin Chi Chen)
dc.contributor.authorChun-Wei Chien
dc.contributor.author紀鈞瑋zh_TW
dc.date.accessioned2021-06-15T04:52:18Z-
dc.date.available2012-08-06
dc.date.copyright2010-08-06
dc.date.issued2010
dc.date.submitted2010-08-02
dc.identifier.citation[1]Baldrich, E., Restrepo, A., O'Sullivan, C.K., 2004. Aptasensor development: Elucidation of critical parameters for optimal aptamer performance. Anal Chem 76, 7053-7063.
[2]Bichler, J., Heit, J.A., Owen, W.G., 1996. Detection of thrombin in human blood by ex-vivo hirudin. Thromb Res 84, 289-294.
[3]Bishop, P.D., Lewis, K.B., Schultz, J., Walker, K.M., 2006. Comparison of recombinant human thrombin and plasma-derived human alpha-thrombin. Semin Thromb Hemost 32, 86-97.
[4]Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H., Toole, J.J., 1992. Selection of Single-Stranded-DNA Molecules That Bind and Inhibit Human Thrombin. Nature 355, 564-566.
[5]Bruchez, M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P., 1998. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013-2016.
[6]Cheng, A.K.H., Su, H.P., Wang, A., Yu, H.Z., 2009. Aptamer-Based Detection of Epithelial Tumor Marker Mucin 1 with Quantum Dot-Based Fluorescence Readout. Anal Chem 81, 6130-6139.
[7]Choi, Y., Kim, H.P., Hong, S.M., Ryu, J.Y., Han, S.J., Song, R., 2009. In situ Visualization of Gene Expression Using Polymer-Coated Quantum-Dot-DNA Conjugates. Small 5, 2085-2091.
[8]Ellington, A.D., Szostak, J.W., 1990. Invitro Selection of Rna Molecules That Bind Specific Ligands. Nature 346, 818-822.
[9]Forster, T., 1959. 10th Spiers Memorial Lecture - Transfer Mechanisms of Electronic Excitation. Discuss Faraday Soc, 7-17.
[10]Gao, X.H., Yang, L.L., Petros, J.A., Marshal, F.F., Simons, J.W., Nie, S.M., 2005. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotech 16, 63-72.
[11]Gill, R., Zayats, M., Willner, I., 2008. Semiconductor quantum dots for bioanalysis. Angew Chem Int Edit 47, 7602-7625.
[12]Grabarek, Z., Gergely, J., 1990. Zero-Length Crosslinking Procedure with the Use of Active Esters. Anal Biochem 185, 131-135.
[13]Hamaguchi, N., Ellington, A., Stanton, M., 2001. Aptamer beacons for the direct detection of proteins. Anal Biochem 294, 126-131.
[14]Huntington, J.A., 2005. Molecular recognition mechanisms of thrombin. J Thromb Haemost 3, 1861-1872.
[15]Jenison, R.D., Gill, S.C., Pardi, A., Polisky, B., 1994. High-Resolution Molecular Discrimination by Rna. Science 263, 1425-1429.
[16]Jiang, Y.X., Fang, X.H., Bai, C.L., 2004. Signaling aptamer/protein binding by a molecular light switch complex. Anal Chem 76, 5230-5235.
[17]Kessler, C.M., Ortel, T.L., 2009. Recent developments in topical thrombins. Thromb Haemostasis 102, 15-24.
[18]Kim, G.I., Kim, K.W., Oh, M.K., Sung, Y.M., 2009. The detection of platelet derived growth factor using decoupling of quencher-oligonucleotide from aptamer/quantum dot bioconjugates. Nanotechnology 20, 175503.
[18]Levy, M., Cater, S.F., Ellington, A.D., 2005. Quantum-dot aptamer beacons for the detection of proteins. Chembiochem 6, 2163-2166.
[19]Li, B.L., Wei, H., Dong, S.J., 2007. Sensitive detection of protein by an aptamer-based label-free fluorescing molecular switch. Chemical Communications, 73-75.
[20]Li, J.W.J., Fang, X.H., Tan, W.H., 2002. Molecular aptamer beacons for real-time protein recognition. Biochem Bioph Res Co 292, 31-40.
[21]Lim, S.H., Buchy, P., Mardy, S., Kang, M.S., Yu, A.D.C., 2010. Specific Nucleic Acid Detection Using Photophysical Properties of Quantum Dot Probes. Anal Chem 82, 886-891.
[22]Lim, T.C., Bailey, V.J., Ho, Y.P., Wang, T.H., 2008. Intercalating dye as an acceptor in quantum-dot-mediated FRET. Nanotechnology 19, 075701.
[23]Macaya, R.F., Schultze, P., Smith, F.W., Roe, J.A., Feigon, J., 1993. Thrombin-Binding DNA Aptamer Forms a Unimolecular Quadruplex Structure in Solution. P Natl Acad Sci USA 90, 3745-3749.
[24]Mathews, D.H., Disney, M.D., Childs, J.L., Schroeder, S.J., Zuker, M., Turner, D.H., 2004. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. P Natl Acad Sci USA 101, 7287-7292.
[25]Medintz, I.L., Mattoussi, H., 2009. Quantum dot-based resonance energy transfer and its growing application in biology. Phys Chem Chem Phys 11, 17-45.
[26]Nagatoishi, S., Tanaka, Y., Tsumoto, K., 2007. Circular dichroism spectra demonstrate formation of the thrombin-binding DNA aptamer G-quadruplex under stabilizing-cation-deficient conditions (vol 352, pg 812, 2007). Biochem Bioph Res Co 354, 837-838.
[27]Netzel, T.L., Nafisi, K., Zhao, M., Lenhard, J.R., Johnson, I., 1995. Base-content dependence of emission enhancements, quantum yields, and lifetimes for cyanine dyes bound to double-strand DNA: Photophysical properties of monomeric and bichromophoric DNA stains. J Phys Chem-Us 99, 17936-17947.
[28]Pei, R., Stojanovic, M.N., 2008. Study of thiazole orange in aptamer-based dye-displacement assays. Anal Bioanal Chem 390, 1093-1099.
[29]Pons, T., Uyeda, H.T., Medintz, I.L., Mattoussi, H., 2006. Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots. J Phys Chem B 110, 20308-20316.
[30]Reiss, P., Protiere, M., Li, L., 2009. Core/Shell Semiconductor Nanocrystals. Small 5, 154-168.
[31]Robertson, D.L., Joyce, G.F., 1990. Selection Invitro of an Rna Enzyme That Specifically Cleaves Single-Stranded-DNA. Nature 344, 467-468.
[32]Ruedas-Rama, M.J., Orte, A., Crovetto, L., Talavera, E.M., Alvarez-Pez, J.M., 2010. Photophysics and Binding Constant Determination of the Homodimeric Dye BOBO-3 and DNA Oligonucleotides. J Phys Chem B 114, 1094-1103.
[33]Rye, H.S., Yue, S., Wemmer, D.E., Quesada, M.A., Haugland, R.P., Mathies, R.A., Glazer, A.N., 1992. Stable Fluorescent Complexes of Double-Stranded DNA with Bis-Intercalating Asymmetric Cyanine Dyes - Properties and Applications. Nucleic Acids Res 20, 2803-2812.
[34]Shuman, M.A., Majerus, P.W., 1976. Measurement of Thrombin in Clotting Blood by Radioimmunoassay. J Clin Invest 58, 1249-1258.
[35]Swain, M.D., Octain, J., Benson, D.E., 2008. Unimolecular, Soluble Semiconductor Nanoparticle-Based Biosensors for Thrombin Using Charge/Electron Transfer. Bioconjugate Chem 19, 2520-2526.
[36]Tasset, D.M., Kubik, M.F., Steiner, W., 1997. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J Mol Biol 272, 688-698.
[37]Tuerk, C., Gold, L., 1990. Systematic Evolution of Ligands by Exponential Enrichment - Rna Ligands to Bacteriophage-T4 DNA-Polymerase. Science 249, 505-510.
[38]Wang, X.Y., Dong, P., Yun, W., Xu, Y., He, P.G., Fang, Y.Z., 2009. A solid-state electrochemiluminescence biosensing switch for detection of thrombin based on ferrocene-labeled molecular beacon aptamer. Biosens Bioelectron 24, 3288-3292.
[39]Yang, P., De Cian, A., Teulade-Fichou, M.P., Mergny, J.L., Monchaud, D., 2009. Engineering Bisquinolinium/Thiazole Orange Conjugates for Fluorescent Sensing of G-Quadruplex DNA. Angew Chem Int Edit 48, 2188-2191.
[40]Zhang, C.Y., Johnson, L.W., 2009. Single Quantum-Dot-Based Aptameric Nanosensor for Cocaine. Anal Chem 81, 3051-3055.
[41]Zhang, Y., Chen, Y.S., Westerhoff, P., Crittenden, J.C., 2008. Stability and removal of water soluble CdTe quantum dots in water. Environ Sci Technol 42, 321-325.
[42]Zhou, C.S., Jiang, Y.X., Hou, S., Ma, B.C., Fang, X.H., Li, M.L., 2006. Detection of oncoprotein platelet-derived growth factor using a fluorescent signaling complex of an aptamer and TOTO. Anal Bioanal Chem 384, 1175-1180.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46047-
dc.description.abstract本研究發展一種無須進行螢光標記,用於感測蛋白質之新穎螢光量子點信標試劑。本研究策略係利用量子點-適體複合物作為蛋白質之辨識單元,再配合核酸嵌合染劑(intercalating dye)作為訊號單元,最後以螢光共振能量轉移技術(Fluorescence Resonance Energy Transfer, FRET)進行標的蛋白之感測。目前利用量子點-適體複合物進行蛋白質檢測之方法,多建立於藉由目標蛋白與適體之結合所引起之構形變化性質,造成適體尾端標記之螢光熄滅分子與量子點距離變化產生FRET訊號改變。這樣的方法需要額外進行特殊之標記適體設計,且會牽涉適體直接修飾,可能改變適體結構與影響適體之蛋白質辨識能力。本研究利用DNA嵌合式螢光物質作為量子點螢光受體,能提供一不需對目標蛋白質與適體分子進行螢光標定(label-free)且不需進行額外之純化分離的檢測方式,非常適合搭配可攜式光學感測器進行單一或多標的蛋白質標的之臨床或現場快速偵測應用。本研究利用碳二亞酸媒介耦合反應製備量子點-適體複合物,在Sulfo-NHS與EDC比例為0.5的情況反應兩小時能獲得感測靈敏度最高之量子點-適體複合物,在此條件中,適體/量子點比例為3.2,理論螢光轉移效率為88.3 %。在目標蛋白的選擇上則以在凝血機制中扮演關鍵調控蛋白酶角色之凝血蛋白(thrombin)作為標的物,在緩衝溶液中,本研究所提出之量子點-適體複合物在500 nM凝血蛋白中能獲得58.9% ± 1.36的訊號響應,偵測極限為1nM,線性區間為1至20 nM (r=0.95),同時該複合物對於非專一性標的物牛血清白蛋白並不具有相同訊號響應,並且本研究亦在血清全蛋白干擾下驗證之量子點-適體信標試劑之專一性與靈敏性。在15%血清中,此螢光信標對500 nM凝血蛋白仍具有10.1% ± 0.3的螢光訊號下降。另外在15%血清中此一螢光信標亦能有濃度相依之訊號響應,其線性迴歸之相關係數r可到達0.99979。zh_TW
dc.description.abstractThis thesis proposes a direct and simple design of fluorescent quantum dot beacon for label-free and separation-free protein detection, and the protein quantification is carried out by measuring the FRET signal reduction between the quantum dot (QD) and the intercalating dyes on the aptamer probe, which is conjugated to the QD. To date, a number of QD-aptamer based sensors have been developed, most of which use displacement strategy of the quencher-carried complementary sequence by target proteins. However, those methods need to design a modified aptamer sequence to enhance the FRET efficiency. Modification of aptamer sequence needs special care on preserving the original protein-binding confirmation because such sequence modification may diminish an aptamer's binding motif and cause malfunction of the aptamer. In this study, quantum dot-aptamer complexes and DNA intercalating dyes are used as the recognition and reporting elements, respectively. Moreover, it also provides a label-free and separation-free diagnostic format. Having these advantages, the proposed method is very suitable for portable optical sensors for single or multiple target proteins detection in clinical or on-site identification. In this study, EDC-mediated coupling strategy was utilized to construct a QD-aptamer complex. By using the ratio of Sulfo-NHS to EDC at 0.5 and conjugation for 2 hours, the highest sensitive performance was observed. In this condition, the ratio of aptamer to quantum dot is 3.2 and the theoretical FRET efficiency is 88.3%. To demonstrate the aforementioned QD-aptamer-intercalating dye-based protein detection, human thrombin is used as a detection target. Thrombin is known as a key protease in blood coagulation mechanism. In phosphate saline buffer condition, the change of fluorescence of the beacon can achieve 58.9% ± 1.36 responding with 500 nM thrombin. The linear range of thrombin detection is between 1 and 20 nM (R=0.95) and limit of detection is as low as 1 nM. In addition, this work also demonstrates that the beacon is compatible with complex matrixes. In 15% serum, the relative fluorescent change of the beacon is 10.1% ± 0.3 against 500 nM thrombin. Furthermore, the dose-dependent response in 15% serum can also be obtained with coefficient of determination, r, approaching 0.99979.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:52:18Z (GMT). No. of bitstreams: 1
ntu-99-R97631012-1.pdf: 1438938 bytes, checksum: a84b60e3fa73e80c3380172240739cde (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝 i
摘要 ii
目錄 v
圖目錄 viii
表目錄 x
第一章 導論 1
1.1 前言 1
1.2 研究目的 3
1.3 研究架構 4
第二章 文獻探討 5
2.1 凝血蛋白與其適體 5
2.2量子點螢光信標 8
2.2.1量子點與其優勢 8
2.2.2量子點-適體複合物之發展 9
第三章 研究方法 12
3.1 實驗儀器與設備 12
3.2 實驗藥品 13
3.3 適體探針選擇 14
3.4 DNA結構對嵌合式螢光染劑的親合力影響分析 15
3.5量子點-適體複合物的製備 15
3.5.1量子點與DNA適體的接合作用 15
3.5.2 量子點-適體複合物的純化 16
3.6 量子點-適體複合物之定量�定性分析 16
3.6.1 濃度定量分析 16
3.6.2 洋菜膠電泳分析 16
3.6.2.1 洋菜膠體的製備 16
3.6.2.2 電泳與分析 17
3.6.3 粒徑大小分析 17
3.6.4 量子點上適體數量估計 18
3.7目標蛋白質的偵測 18
3.7.1 偵測原理 18
3.7.2 螢光訊號的分析 19
第四章 結果與討論 20
4.1 嵌合式螢光染劑對DNA結構之親合力分析 20
4.2接合作用最佳化 22
4.2.1 緩衝溶液中鎂離子之影響 22
4.2.2 Sulfo-NHS與EDC的比例 25
4.2.3 微量濃縮離心管的純化效果 28
4.2.4 適體的接合時間 30
4.2.5 不同適體於量子點上之感測效果 35
4. 3 凝血蛋白之偵測 39
4. 3.1 螢光信標之評估 39
4.3.2 針對凝血蛋白感測之能力表現 48
4.3.3 重複使用性之測試 51
第五章 結論與建議 54
5.1 結論.. 54
5.2 建議.. 56
參考文獻 57
附錄 61
dc.language.isozh-TW
dc.subject凝血蛋白zh_TW
dc.subject量子點zh_TW
dc.subject適體zh_TW
dc.subject嵌合染劑zh_TW
dc.subject螢光共振能量轉移zh_TW
dc.subjectthrombinen
dc.subjectaptameren
dc.subjectFRETen
dc.subjectintercalating dyesen
dc.subjectquatum doten
dc.title以量子點-適體-染劑複合物發展新穎蛋白質螢光信標試劑zh_TW
dc.titleDevelopment of a Novel Fluorescent Beacon Reagent for Protein Detection based on a Quantum Dot-Aptamer-Dye Complexen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee白果能(Konan Peck),吳嘉文(Chia-Wen Wu),周呈霙(Cheng-Ying Chou)
dc.subject.keyword量子點,適體,嵌合染劑,螢光共振能量轉移,凝血蛋白,zh_TW
dc.subject.keywordquatum dot,aptamer,intercalating dyes,FRET,thrombin,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2010-08-02
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved