Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46029
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林裕彬
dc.contributor.authorYu-Long Huangen
dc.contributor.author黃裕龍zh_TW
dc.date.accessioned2021-06-15T04:51:47Z-
dc.date.available2010-08-10
dc.date.copyright2010-08-10
dc.date.issued2010
dc.date.submitted2010-07-30
dc.identifier.citation1.李達源、莊愷瑋,1997。地理統計應用於土壤污染調查與污染區之界定,第五屆土壤污染防治研討會,第169 頁至第198 頁。
2.林裕彬、張尊國,1999。條件模擬小樣區土壤鋅重金屬污染,中國農業工程學報,第四十五卷,第一期,第24 頁至第37 頁。
3.張尊國、王允義、林裕彬,1996。利用地理統計方法鑑識土壤重金屬污染之空間分佈,第九屆環境規畫與管理研討會,第388 頁至第395 頁。
4.張尊國、黃國珍、徐貴新,1997。土壤重金屬污染特性探討-因子分析,中國農業工程學報,第四十三卷,第二期,第11 頁至第19 頁。
5.莊愷瑋、李達源、陳尊賢,1996。地理統計預測污染土壤中重金屬的空間分佈 Ι.極端值與變異圖模式的影響,中國農業化學會誌,第三十四卷,第五期,第560 頁至第574 頁。
6.陳志豪,2005。土壤汙染調查之採樣策略研究,台灣大學生物環境系統工程學系碩士論文。
7.陳信諭,2003。模擬退火演算法在土壤採樣佈點之應用,台灣大學生物環境系統工程學系碩士論文。
8.廖婉君,2005。以初次採樣密度與管制值為基礎的調整式叢集採樣改善克金利推估應用於污染場址的界定,台灣大學生物環境系統工程學系碩士論文。
9.鄭百佑,2006。應用地理統計及空間尺度轉換於污染地區特徵分析與台灣地區重金屬污染場址復育驗收準則探討,台灣大學生物環境系統工程學系博士論文。
10.鄭智馨、廖淑華、李達源、謝長富、陳尊賢,1996。南仁山區土壤性質之空間分佈,中國農業化學會誌,第三十四卷,第五期,第547 頁至第 559 頁。
11.鄭森源、萬鑫森,1992。地理統計學在土壤污染方面之應用,中國農業化學會誌,第三十二卷,第四期,第406 頁至第429 頁
12.闕蓓德、駱尚廉,1996。土壤污染評估決策支援系統之敏感度分析,第九屆環境規畫與管理研討會,第169 頁至第176 頁。
13.環保署土壤及地下水汙染整治基金管理委員會97年度整治年報,2007
14.行政院環境保護署,「台灣地區土壤重金屬含量調查報告(二)」,1987。
15.行政院環境保護署,「土壤污染監測基準」,2001
16.行政院環境保護署,「土壤污染管制標準」,2001
17.江莉琦,2005。有限混合分佈理論運用於台灣農地重金屬污染特性之分群。臺灣大學生物環境系統工程學研究所碩士論文
18.鄭百佑,2002。結合克利金法與模糊理論對土壤重金屬含量空間分佈之推估,台灣大學生物環境系統工程學系碩士論文。
19.蔡志偉,2003。以協同因子克利金法分析土壤重金屬濃度空間變異之來源,台灣大學生物環境系統工程學系碩士論文。
20.鍾旻修,2003。應用地理統計於土壤重金屬污染物之空間分佈探討,逢甲大學環境工程與科學學系碩士論文
21.Armstrong, M.(1998). Basic Linear Geostatistics. Springer-Verlag, USA.
22.Bourennane, H., King, D., Couturier, A., Nicoullaud, B., Mary, B., Richard, G. (2007) Uncertainty assessment of soil water content spatial patterns using geostatistical simulations: an empirical comparison of a simulation accounting for single attribute and a simulation accounting for secondary information. Ecol Model, 205, 323–335.
23.Brus, D.J., de Gruijter, J.J., Van Groenigen, J.W.(2004) Designing purposive and random spatial coverage samples by the k-means clustering algorithm. Global Workshop on Digital Soil Mapping, Montpellier, France, September 2004.
24.Burgess, T. M., Webster, R.(1980) Optimal interpolation and isarithmic mapping of soil properties, Journal of Soil Science, 31,315-331.
25.DeBusk, W.F., K.R. Reddy﹐M.S. Koch and Y.Wang﹐(1994) Spatial Distribution of Soil Nutrients in a Northern Everglades Marsh Water Conservation Area 2A. Soil Sci. Soc. Am. J. 58, 543-552.
26.Deutsch, C.V., Cockerham, P.W.,(1994) Practical considerations in the application of simulated annealing to stochastic simulation. Mathematical Geology, 26, 67-82.
27.Franco, C., Soares, A., Delgado, J. (2006) Geostatistical modelling of heavy metal contamination in the topsoil of Guadiamar river margins (S Spain) using a stochastic simulation technique. Geoderma, 136(3–4), 852–864.
28.Garcia, M., Froidevaux, R.(1997) Application of geostatistics to 3-D modeling of contaminated sites: a case study. In: Soares, A., et al. (Eds.), geoENV I - Geostatistics for Environmental Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 309-325.
29.Goovaerts, P. (1997) Geostatistics for natural resources evaluation, Oxford University Press: New York, pp. 259-368.
30.Goovaerts, P.(2001) Geostatistical modelling of uncertainty in soil science. Geoderma, 103, 3-26.
31.Gotway, C. A., Ferguson, R.B., Herget, G.W. , Petetson,T.A. (1996) Comparison of Kriging and Inverse-Distance Methods for Mapping of Soil Parameters. Soil Sci. Soc. Am. J., 60, 1237-1247.
32.Gotway, C.A. and Herget,G.W. (1997) Incorporating Spatial Trends and Anistotropy in Geostatistical Mapping of Soil Properties, Soil Sci. Soc. Am. J., 61, 298-309.
33.Iman, R.L., Conover, W.J. (1980) Small sample sensitivity analysis techniques for computer models, with an application to risk assessment. Communications in Statistics Theory and Method , 9, 1749–1874.
34.Jang, C.S., Liu, C.W., Lin, K.H., Huang, F.M. & Wang, SW. (2006) Spatial analysis of potential carcinogenic risks associated with ingesting arsenic in aquacultural tilapia (Oreochromis mossambicus) in blackfoot disease hyperendemic areas. Environmental Science and Technology, 40(5), 1707-1713.
35.Jeffrey, L. and Smith, (1993)Using Multiple-Variable Indicator Kriging for Evaluating Soil Quality, Soil Sci. Soc. Am. J.,57 , 43-749.
36.Journel, A.G.(1988) Nonparametric Geostatistics for risk and Additional Sampling Assessment. In L. Keith (ed.) Principles of environmental sampling, American Chemical Society, 45-72.
37.Journel, A.G., and C. J. Huijbregts.(1978) Mining Geostatics. Academic Press, New York.
38.Juang, K.W., and Lee, D. Y.(1998a) Simple Indicator Kriging for Estimating the Probability of Incorrectly Delineating Hazardous Areas in a Contaminated Site. Environmental Science & Technology, 32(17), 2487-2493.
39.Juang, K.W., Chen, Y. S., Lee, D. Y.(2004) Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils. Environmental Pollution, 127, 229-238.
40.Juang, K.W. and Lee, D.Y. (1998b) A Comparison of Three Kriging Methods Using Auxiliary Variables in Heavy-Metal Contaminated Soils. Journal of Environmental Quality, 27 (2), 355-363.
41.Lin, Y.P., Cheng, B.Y., Shyu, G.S., Chang, T.K. (2010) Combining a finite mixture distribution model with indicator kriging to delineate and map the spatial patterns of soil heavy metal pollution in Chunghua County, central Taiwan. Environmental Pollution, 158, 235–244.
42.Lin, Y.P. (2008) Simulating spatial distributions, variability and uncertainty of soil arsenic by geostatistical simulations in geographic information systems. The Open Environmental Journal, 2, 26-33.
43.Lin, Y.P. , Chu, H.J., Wang, C.L., Yu, H.H., Wang ,Y.C.(2009) Remote Sensing Data with the Conditional Latin Hypercube Sampling and Geostatistical Approach to Delineate Landscape Changes Induced by Large Chronological Physical Disturbances. Sensors, 9, 148-174.
44.Lin, Y.P., Chang, T.K., Teng, T.P. (2001) Characterization of soil lead by comparing sequential Gaussian simulation, simulated annealing simulation and kriging methods. Environ Geol, 41(1), 189–199.
45.Lin, Y.P., Chu, H.J., Huang, Y.L., Cheng, B.Y., Chang, T.K. (2010) Modeling spatial uncertainty of heavy metal content in soil by conditional Latin hypercube sampling and geostatistical simulation. Environmental Earth Sciences, ISSN: 1866-6280.
46.McKenzie, N.J., Ryan, P.J.(1999) Spatial prediction of soil properties using environmental correlation. Geoderma, 89, 67–94.
47.Minasny B., McBratney A.B. (2006) A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences , 32, 1378–1388.
48.Minasny, B., McBratney,A,B. Walvoort, D.J.J. (2007) The variance quadtree algorithm:Use for spatial sampling design. Computers & Geosciences, 33, 383–392.
49.Royle, J.A., Nychka, D.(1998) An algorithm for the construction of spatial coverage designs with implementation in SPLUS. Computers & Geosciences, 24 (5), 479–488.
50.Saito, H., Goovaerts, P. (2000) Geostatistical interpolation of positively skewed and censored data in a dioxin-contaminated site. Environ Sci Technol, 34(19),4228–4235.
51.Thompson,s.k., Seber, G.A.F. (1996) Adative sampling,Wiley, New York.
52.van Groenigen, J.W., Siderius, W., Stein, A.(1999) Constrained optimisation of soil sampling for minimisation of the kriging variance. Geoderma,87 , 239–259.
53.Verstraete, S., Van Meirvenne, M.(2008) A multi-stage sampling strategy for the delineation of soil pollution in a contaminated. Environmental Pollution, 154, 184–191.
54.Warrick, A.W., Myers, D.E., Nielsen,D.R. (1986) Geostatistical Methods Applied to Soil Science, in A. Klute(ed.) Methods of Soil analysis, part1, 53-80.
55.Webster, R., and M. A. Oliver.(1990) Statistical Methods in Soil and Land Resource Survey. Oxford Univ. Press, New York.
56.Xu, C.G., He, H.S., Hu, Y.M., Chang, Y., Li, X.Z., Bu, R.C. (2005) Latin hypercube sampling and geostatistical modeling of spatial uncertainty in a spatially explicit forest landscape model simulation. Ecol Model , 185(2–4), 255–269
57.Yost, R.S., Uehara, G., and Fox, R.L., (1982) Geostatistics Analysis of Soil Chemical Properties or Large Land Area II Kriging. Soil Sci. Am. J. 46, 1033-1037.
58.Zhao, Y.C., Shi, X.Z., Yu, D.S. et al (2005) Uncertainty assessment of spatial patterns of soil organic carbon density using sequential indicator simulation, a case study of Hebei Province, China. Chemosphere, 59(11), 1527–1535.
59.Zhao, Y.C., Xu, X.H., Huang, B., et al.(2007) Using robust kriging and sequential Gaussian simulation to delineate the copper- and lead-contaminated areas of a rapidly industrialized city in Yangtze River Delta, China. ENVIRONMENTAL GEOLOGY, 52, 1423-1433.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46029-
dc.description.abstract條件拉丁超立方抽樣法是一種以啟發式演算法,其在現有的資料空間中找出符合拉丁超立方抽樣特徵空間的抽樣方式。拉丁超立方抽樣法是一種分層隨機採樣的方法,能有效的選出符合原始資料分布的樣本,常應用於敏感度及不確定性分析。本研究應用條件拉丁超立方抽樣法於彰化地區土壤重金屬採樣資料抽樣,希望能找出的樣點中鉻、銅、鎳、鋅四種重金屬能符合原始採樣資料的統計特性及空間特性的樣本,以減少後續監測、復育所需要的樣本數,進而減少實驗室分析的成本,然而條件拉丁抽樣法並未考慮採樣點資料的空間分佈,因此本研究發展出分區條件拉丁超立方抽樣,首先於抽樣過程中將研究區分區,以期所選取的樣本於空間特性上能更接近於原始資料之空間特性及分佈,並與隨機抽樣方式及條件拉丁抽樣法進行空間特性比較。並且將原始資料與三種不同抽樣方式所得的資料以逐步指標模擬法模擬研究區內重金屬濃度空間分布情形,以及計算局部和空間不確定性。結果顯示以條件拉丁抽樣法所選出的樣點其重金屬的統計特性及空間特性皆較隨機抽樣法更接近原始資料的統計特性及空間特性,而逐步指標模擬的結果顯示條件拉丁抽樣法所選出之樣點可以保留汙染高風險區,而分區條件拉丁抽樣法不只能保留汙染高風險區的分布,更能降低高不確性區的分布。zh_TW
dc.description.abstractConditioned Latin hypercube sampling is a sampling method using heuristic algorithm to find out the data in the incumbent data space which conjoint the eigenspace of Latin hypercube sampling. Latin hypercube (LHS) is a stratified random sampling approach which can proceed the sampling technique with the original distribution. The research aims to resample the heavy metal in soil at Chang-Hua County by conditioned Latin hypercube sampling (LHS) technique, and with expectation to diminish the sampling number to lower the cost of laboratorial analysis for cupper (Cu), chromium (Cr), nickel (Ni), and zinc (Zn) with their original statistical distributions. In the meanwhile, there is no consideration in spatial aspect for sampling sites in conditioned Latin hypercube sampling (cLHS). So the incorporation of spatial data , which is regarded as the spatial cLHS, might be able to drive the data closer to their original spatial allocation. Afterwards, the sampling efficiency for LHS, cLHS, and spatial cLHS were fully examined. The spatial distribution and uncertainty of each technique, including original data without sampling, were evaluated by the sequential indicator simulation (SIS). The result showed that the spatial cLHS could better imitate the distribution and spatial allocation of the original data. And the result of SIS showed that the sampled data from cLHS could only preserve the risky area of pollution, but the ones from spatial cLHS could even lower the uncertainty.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:51:47Z (GMT). No. of bitstreams: 1
ntu-99-R97622036-1.pdf: 8248316 bytes, checksum: 18ea76aac9f563cb833b387ab1362962 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究流程 3
第二章 文獻回顧 5
2.1 台灣土壤重金屬調查現況 5
2.2 土壤採樣策略 9
2.3 地理統計 12
第三章 研究理論與方法 16
3.1 研究區域與材料 16
3.1.1研究區域 16
3.1.2 應用軟體 18
3.2 條件拉丁超立方抽樣 18
3.3 地理統計 22
3.3.1 區域化變數理論 22
3.3.2 半變異圖及常用模型 23
3.3.3 一般克利金 25
3.3.4 指標克利金 26
3.3.5 逐步指標模擬 29
3.4局部與空間不確定性 32
3.5 誤差評估 33
第四章 結果與討論 34
4.1 基本統計量 34
4.1.1 原始樣本之基本統計量 34
4.1.2 抽樣樣本之基本統計量 35
4.2 空間特性 41
4.3 空間分布 50
4.4 局部及空間不確定性 69
第五章 結論與建議 81
5.1 結論 81
5.2 建議 82
參考文獻 83
dc.language.isozh-TW
dc.subject土壤汙染zh_TW
dc.subject重金屬zh_TW
dc.subject空間不確定性zh_TW
dc.subject條件拉丁超立方抽樣zh_TW
dc.subject條件模擬zh_TW
dc.subjectHeavy metalen
dc.subjectsoil Pollutionen
dc.subjectConditional simulationen
dc.subjectConditioned Latin hypercube samplingen
dc.subjectSpatial uncertaintyen
dc.title條件拉丁超立方抽樣應用於土壤重金屬資料抽樣與空間分佈模擬zh_TW
dc.titleConditioned Latin hypercube sampling in heavy metal sampling and spatial distribution simulationen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張尊國,童慶斌,徐貴新
dc.subject.keyword重金屬,空間不確定性,條件拉丁超立方抽樣,條件模擬,土壤汙染,zh_TW
dc.subject.keywordHeavy metal,Spatial uncertainty,Conditioned Latin hypercube sampling,Conditional simulation,soil Pollution,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2010-08-02
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
8.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved