請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46018完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋家驥 | |
| dc.contributor.author | Shao-Jui Chang | en |
| dc.contributor.author | 章劭睿 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:51:27Z | - |
| dc.date.available | 2011-08-03 | |
| dc.date.copyright | 2010-08-03 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-02 | |
| dc.identifier.citation | [1] W.R. Wood, A.L. Loomis, The physical and biological effects of high frequency sound wave of great intensity, Philos. Mag. 4 (22) 417-437, 1927.
[2] Kelvin Lord (W Thomson) Hydrokinetic solutions and observations. Phil Mag 42:362-377, 1871. [3] Rayleigh L On the pressure developed in a liquid during the collapse of a spherical cavity. Phil Mag Ser 6 34:94-98, 1917. [4] Lang RJ Ultrasonic atomization of liquids. J Acoust Soc Am34:6-8, 1962. [5] Barreras, F., Amaveda, H., and Lozano, A. , ‘‘Transient High-Frequency Ultrasonic Water Atomization,’’ Exp. Fluids, 33~37, pp. 405-413, 2002. [6] Jungmyoung Jua,b, Yutaka Yamagatab,∗, Hitoshi Ohmorib, Toshiro Higuchia, “Standing wave type surface acoustic wave atomizer”, Sensors and Actuators A ,vol. 147, pp. 570-575, 2008. [7] J.N. Antonevich, Ultrasonic atomization of liquids, IRE Trans. Ultrason. Eng. PGUE-7 6, pp. 6-15, 1959. [8] A.J. Yule, Y.A. Suleimani, On droplet formation from capillary waves on a vibration surface, Proc. R. Soc. Lond. A 456, pp.1069-1085, 2000. [9] A. Lozano, H. Amaveda, F. Barreras, X. Jorda, M. Lozano, High-frequency ultrasonic atomization with pulsed excitation, J. Fluids Eng. Trans. ASME 125 , pp.941-945, 2003. [10] Zaitsu, T., Shigehisa, T., Shoyama, M., and Ninomiya, T., ‘‘Piezoelectric Transformer Converter With PWM Control,’’ IEEE APEC Conference, pp.279-283, 1996. [11] Grant, D. A., and Gowar, J., Power MOSFETS, Theory and Applications,John Wiley and Sons, New York, 1989. [12] J.W. Kim, Y. Yamagata, M. Takasaki, B.H. Lee, H. Ohmori, T. Higuchi, A device for fabricating protein chips by using a surface acoustic wave atomizer and electrostatic deposition, Sens. Actuator B: Chem. 107, pp. 535–545, 2005. [13] O.V. Abramov, High-Intensity Ultrasonics, Gordon and Breach Science Publishers , ISBN 90-5699-041-1, 1998. [14] M. Kurosawa, T. Watanabe, T. Higuchi, Surface acoustic wave atomizer with pumping effect, in: Proceedings of the IEEE MEMS, Amsterdam, Netherlands, pp. 25–30, 1995. [15] V.I. Sorokin, The Effect of fountain formation at the surface of a vertically oscillating liquid, Sov. Phys. Acoust. 3, pp.281–291, 1957. [16] Eisenmenger, W., ‘‘Dynamic Properties of Surface Tension of Water and Aqueous Solutions of Surface Active Agents With Standing Capillary Waves in the Frequency Range From 10 kHz to 1.5 MHz,’’ Acoustica, 9, pp. 327– 340, 1959. [17] Mohan, N., Undeland, T. M., and Robbins, W. P., Power Electronics: Converters, Applications and Design, John Wiley and Sons, New York , 1989. [18] Sindayihebura, D., and Bolle, L., ‘‘Ultrasonic Atomization of Liquid: Stability Analysis of the Viscous Liquid Film Free Surface,’’ Atomization Sprays, 8, pp. 217–233, 1998. [19] So¨llner, K., ‘‘Experiments to Demonstrate Cavitation Caused by Ultrasonic Waves,’’ Trans. Faraday Soc., 32, pp. 1537–1538, 1936. [20] I. Barbi, et al “Buck Quasi-Resonant Converter Operating at Constant Frequency Analysis Design and Experimentation,” IEEE Translation, vol. 5, no. 3,pp. 276~283, 1990. [21] L. Parrini, “New Technology for the Design of Advanced Ultrasonic Transducers for High-power Application,” Ultrasonics, vol. 41,pp. 261~269, 2003. [22] Y. Kim, Y. Roh, “New Design of Matching layers for High-power and Wide-band Ultrasonic Transducers,” Sensors and Actuators, vol. 71, pp. 116~122, 1998. [23] Krimholtz, Leedom, and Matthaei, “New equivalent circuit for elementary piezoelectric transducers,” Electronics Letters, vol 6, no 13, pp. 398-399 ,1970. [24] R. W. Martin, R. A. Sigilmann, “Force and electrical thevinen equivalent circuits and simulation for thickness mode piezoelectric transducers,” J. Acous. SocAm., vol 58, pp 475-489, 1975. [25] T, R. Meeker, “ Thickness mode piezoelectric transducers,” Ultrasonics , vol. 10, no. 1, pp.26-36, 1972. [26] M. Redwood, “Experiments with the electrical analog of a piezoelectric transducer, “J. Acous. Soc. Am., vol 36, no 10, pp 1872-1880, 1964. [27] M. Onoe, H. F. Tiersten, “Resonant frequencies of finite piezoelectric ceramic vibrators with high electromechanical coupling,” IEEE Trans. Ultrasonic Eng., vol 11, pp 32-39, 1963. [28] W. M. Leach, “Controlled-source analogous circuits and SPICE models for piezoelectric transducers,” ZEEE Trans. Ultrason., Ferroelect., Freq. Cont., vol. 41, no. 1, pp. 6G66, Jan. 1994 [29] C. G. Hutchens and S. A. Moms, “A three port model for thickness mode transducers using SPICE II,”, in Proc. IEEE Ultrason. Symp., pp. 897-902, 1984. [30] 馮若,“超聲手冊”,南京大學出版社,ISBN:7305033545,2001 [31] 周卓明,“壓電力學”,千華出版社,ISBN:9572142402,2003 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46018 | - |
| dc.description.abstract | 近年來,伴隨著高功率轉換裝置和微處理技術的發展,功率超音波的應用變得十分的廣泛。其應用的範圍包括,超音波水下聲納的信號發射、超音波霧化技術,超音波清洗技術,超音波燒灼,超音波醫療等等。但配合這些功率超聲應用的高品質超音波驅動電路卻是十分缺乏的。一般而言,大功率的驅動電路其可動作的頻率範圍最高只到幾百千赫茲。而運用於高頻範圍的驅動電路其可供給的功率卻也有限。長時間穩定的工作也是目前功率超音波驅動電路在設計上和使用上普遍存在的問題。因此,本論文將開發一個功率超音波驅動電路模組並詳細敘述此電路模組每一細部功能電路之設計概念與設計方法。此驅動模組可在輸出大功率的條件下,以幾百千赫茲到數百萬赫茲的驅動信號驅動,擁有高機電的轉換效率,並可以長時間穩定的高效能作動。而本實驗室正在進行超音波霧化加濕技術應用於燃料電池系統的計畫,故本論文將會將此模組化的電路設計應用在超音波霧化器系統之上。此霧化器之超音波驅動電路可驅動500KHz到2MHz之換能器,其輸出電壓可調整,最高額定輸出功率為30W。本論文也會觀察與討論此霧化器的霧化現象。包括霧滴顆粒大小與驅動頻率之關係,霧化速率、霧滴粒徑分佈與驅動電壓之關係。 | zh_TW |
| dc.description.abstract | In recent years, accompanying with the development of the high-speed switch device and microprocessor technology, the range of high power ultrasonic application becomes very broad. The power ultrasonic usually applies to sonar, atomization, cleaning technology, and medical instrument, etc. However, a good designed ultrasonic driving circuits for the power ultrasonic system is very deficient. In General, frequency of high power ultrasonic circuit reaches a maximum of hundreds of thousands hertz, whereas the high frequency circuit can just provide limited power. Long-term steady-going operating is also a problem for power ultrasonic driving circuit on design and in use.
Therefore, this paper shows a high power ultrasonic driving circuit model and describes the concepts and manners in detail of each subtle circuit in this circuit model. This circuit model can drive from hundreds of thousands to several millions hertz on the high power condition, and it has high conversion efficiency between mechanical terminals and electrical ones. Even though the application of ultrasonic atomization in engineering is more general and more important, it is rare to have a good ultrasonic atomization system with high efficiency and excellent atomization effect. As result, in this paper, we are going to apply this circuit model to the ultrasonic atomization system. This circuit can drive transducers with resonance frequency between 500KHz to 2MHz. Its output voltage can be adjusted and the maximum rated output power is 30W. Besides, we’re going to observe and discuss the atomization phenomenon of this atomizer, which includes the relationship between the sizes of droplet and driving frequency, the atomization velocity, and the relationship between the droplet size distribution and the driving voltage. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:51:27Z (GMT). No. of bitstreams: 1 ntu-99-R97525060-1.pdf: 3699391 bytes, checksum: 5b4dfc3313cf2f1d1fba18428ea6f24d (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 III 表目錄 V 圖目錄 VI 第一章 緒論.1 1.1 研究動機與目的..1 1.2 文獻回顧..2 1.3 論文架構與介紹..5 第二章 原理背景..6 2.1 功率超音波..6 2.2 功率超音波的產生的效應 ..6 2.3 功率超音波的產生..7 2.4 壓電超音波換能器..8 2.5 壓電材料之特性..10 2.6 壓電材料之特性參數..13 2.7 壓電陶瓷..15 2.8 壓電換能器等效電路..18 2.8.1 梅森等效電路..18 2.8.2 克里姆霍爾茲等效電路..20 2.9 壓電換能器之效率..21 2.10 壓電換能器之質量因子..23 2.11 超音波霧化之機制..25 第三章 功率超音波驅動電路模組設計之概念..26 3.1 功率超音波驅動電路之細部功能方塊圖..26 3.2 訊號產生電路..26 3.3 功率放大電路..27 3.4 換能器和匹配電路..30 3.5 回饋電路..31 3.6 避免地彈影響電路之穩定度..33 3.6.1 地彈..34 3.6.2 減低地彈之方法..35 第四章 超音波霧化器電路之設計..36 4.1 超音波霧化器電路之細部功能電路說明..36 4.2 電源供應器之設計..38 4.3 訊號產生電路..41 4.4 全橋式功率放大電路..45 4.5 換能器阻抗匹配電路之設計..52 4.6 印刷電路板之設計..58 4.7功率放大電路輸入功率與換能器電功率之轉換效率..61 4.8 超音波霧化器系統..64 第五章 霧化現象之量測結果與討論..67 5.1 超音波霧化器之霧化行為的量測..67 5.1.1 1.75MHz壓電片之最佳霧化液面高度..68 5.1.2 霧化速率與驅動電壓之關係..71 5.1.3 霧化顆粒粒徑分布與驅動電壓之關係..73 5.2 驅動頻率與霧滴粒徑之關係..78 第六章 結論..82 參考文獻..84 | |
| dc.language.iso | zh-TW | |
| dc.subject | 霧化 | zh_TW |
| dc.subject | 功率超音波驅動電路 | zh_TW |
| dc.subject | 超音波系統電路 | zh_TW |
| dc.subject | power ultrasonic driving circuit | en |
| dc.subject | ultrasonic system circuit | en |
| dc.subject | atomization | en |
| dc.title | 功率超音波驅動電路模組應用於霧化器 | zh_TW |
| dc.title | Power ultrasonic driving circuit model applying to atomizer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳昭宏,李坤彥,楊富傑 | |
| dc.subject.keyword | 超音波系統電路,功率超音波驅動電路,霧化, | zh_TW |
| dc.subject.keyword | ultrasonic system circuit,power ultrasonic driving circuit,atomization, | en |
| dc.relation.page | 86 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-02 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
