請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45996完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳瑞北 | |
| dc.contributor.author | Wan-Ling Tsai | en |
| dc.contributor.author | 蔡宛伶 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:50:49Z | - |
| dc.date.available | 2010-08-11 | |
| dc.date.copyright | 2010-08-11 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-01 | |
| dc.identifier.citation | [1] H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada,and Y. Nagatomi, “A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 789-792, June 1997.
[2] L. C. Tsai, and C. W. Hsue, “Dual-band bandpass filters using equal-length coupled-serial-shunted lines and Z-transform techniques,” IEEE Trans. Microwave Theory Tech., vol. 52, no.4, pp. 1111-1117, April 2004. [3] K. Li, D. Kurita, and T. Matsuki, “Dual-band ultra-wideband bandpass filter,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1193-1196, June 2006. [4] A.-S. Liu, T.-Y. Huang, and R.-B. Wu, “A dual wideband filter design using frequency mapping and stepped-impedance resonators,” IEEE Trans. Microwave Theory Tech., vol. 56, no.12, pp. 2921-2929, Dec. 2008. [5] X. Y. Chang, J.X. Chen, Q. Xue, and S.M. Li, “Dual-Band bandpass filters using stub-loaded resonators,” IEEE Microwave Wireless Comp. Lett., vol. 17, no. 8, pp. 583-585, Aug. 2007. [6] P. Mondal, and M. K. Mandal, “Design of dual-band bandpass filters using stub-loaded open loop resonators, ” IEEE Trans. Microwave Theory Tech., vol. 56, no. 1, pp. 150-155, Jan. 2008. [7] J. T. Kuo, T. H. Yeh, and C. C. Yah, “Design of microstrip bandpass filters with a dual-passband response,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 4, pp. 1331-1337, April 2005. [8] J. T. Kuo and H. S. Cheng, “Design of quasi-elliptic function filters with a dual-passband response.” IEEE Microwave Wireless Comp. Lett., vol. 14, pp. 472-474, Oct. 2004. [9] C. Y. Chen, C. Y. Hsu, and H. R. Chuang, “Design of miniature planar dual-band filter using dual-feeding structures and embedded resonators,” IEEE Microwave Wireless Comp. Lett., vol. 16, pp. 669-671, Dec. 2006. [10] M. H. Weng, H. W. Wu, and Y. K. Su, “Compact and low loss dual-band bandpass filter using pseudo-interdigital stepped impedance resonators for WLANs,” IEEE Microwave Wireless Comp. Lett., vol.17, pp. 187-189, March 2007. [11] Y. P. Zhang and M. Sun, “Dual-band microstrip bandpass filter using stepped- impedance resonators with new coupling schemes,” IEEE Trans. Microwave Theory Tech., vol.54, no.10, pp. 3779-3785, Oct.2006. [12] S. Sun and L. Zhu, “Novel design of dual-band microstrip bandpass filters with good in-between isolation,” in Proc. Asia Pacific Microwave Conf., vol. 2, Dec.2005. [13] Y.-C. Chang, C.-H. Kao, M.-H. Weng, and R.-Y. Yang, “Design of the compact dual-band bandpass filter with high isolation for GPS/WLAN applications,” IEEE Microwave Wireless Comp. Lett., vol.19, no.12, pp. 780-782, Dec. 2009. [14] C.-F. Chen, T.-Y. Huang, and R.-B. Wu, “Design of dual- and triple-passband filters using alternately cascaded multiband resonators,” IEEE Trans. Microw. Theory Tech., vol.54, no.9, pp.3550-3558, Sep. 2006. [15] X.-P. Chen, K. Wu, and Z.-L. Li, “Dual-band and triple-band substrate integrated waveguide filters with Chebyshev and quasi-elliptic responses,” IEEE Trans. Microw Theory Tech., vol.55, no.12, pp. 2569-2578, Dec. 2007. [16] B.-J. Chen, T.-M. Shen, and R.-B. Wu, “Dual-band vertically stacked laminated waveguide filter design in LTCC technology,” IEEE Trans. Microw Theory Tech., vol.57, no.6, pp. 1554-1562, June 2009. [17] J. Lee, M. S. Uhm, and I. B. Yom, “A Dual-passband filter of canonical structure for satellite applications,” IEEE Microwave Wireless Comp. Lett., vol.14, no.6, pp. 271-273, June 2004. [18] J. Lee, M. S. Uhm, and I. B. Yom, “Synthesis of a self-equalized dual-passband filter,” IEEE Microwave Wireless Comp. Lett., vol.15, no.4, pp. 256-258, April 2005. [19] P. Lenoir, S. Bila, F. Seyfert, D. Baillargeat, and S. Verdeyme, “Synthesis and design of asymmetrical dual-band bandpass filters based on equivalent network simplification,” IEEE Trans. Microw Theory Tech., vol. 54, no.7, pp. 3090-3097, July 2006. [20] M. Mokhtaari, J. Bornemann, K. Rambabu, and S. Amari, “Coupling-matrix design of dual and triple passband filters,” IEEE Trans.Microw Theory Tech., vol.54, no.11, pp. 3940-3946, Nov. 2006. [21] F.-C. Chen, Q.-X. Chu and Z.-H. Tu, “Tri-band bandpass filter using stub loaded resonators,” Electronics Lett., vol.44, no.12, pp. 747-749, June 2008. [22] X. Y. Zhang, Q. Xue, and B. J. Hu, “Planar tri-band bandpass filter with compact size,” IEEE Microwave Wireless Comp. Lett., vol.20, no.5, pp. 262-264, April 2010. [23] X. Lai, C.-H. Liang, S. H. Di, and B. Wu, “Design of tri-band filter based on stub loaded resonator and DGS resonator” IEEE Microwave Wireless Comp. Lett., vol.20, no.5, pp.265-267, April 2010. [24] C.-H. Lee, C.-I. G. Hsu, and H.-K. Jhuang, “Design of a new tri-band microstrip BPF using combined quarter-wavelength SIRs,” IEEE Microwave Wireless Comp. Lett., vol.16, no.11, pp. 594-596, Nov. 2006. [25] X. Guan, Z. Ma, and P. Cai, “A novel compact bandpass filter with a triple-passband response,” in Proc. Asia Pacific Microwave Conf., pp.1-4, Dec.2008. [26] Y.-C. Chen, Y.-H. Hsieh, C.-H. Lee, and C.-I G. Hsu, “Tri-band microstrip BPF design using tri-section SIRs,” IEEE Antennas Propagat. Society Int. Symp., pp.3113-3116, June 2007. [27] C.-I G. Hsu, C.-H. Lee, and Y.-H. Hsieh, “Tri-band bandpass filter with sharp passband skirts designed using tri-section SIRs,” IEEE Microwave Wireless Comp. Lett., vol. 18, no.1, pp.19-21, Jan. 2008. [28] D. M. Pozar, Microwave Engineering, 3rd Ed., pp. 276-277, pp.278-281, New York: Wiley, 2005. [29] J. –H. Lee, Stephane Pinel, John Papapolymerou, Joy Laskar, and Manos M. Tentzeris, “Low-loss LTCC cavity filters using system-on-package technology at 60 GHz,” IEEE Trans. Microw. Theory Tech., vol.53, no.12, pp.3817-3824, Dec. 2005. [30] B.-J. Chen, T.-M. Shen, and R.-B. Wu, “Design of tri-band filters with improved band allocation,” IEEE Trans. Microwave Theory Tech., vol.57, no.7, pp.1790-1797, July 2009. [31] M. Studniberg and G. V. Eleftheriades, “A quad-band bandpass filter using negative-refractive-index transmission-line (NRI-TL) metamaterials,” in IEEE Antennas Propagat. Society Int. Symp., pp. 4961-4964, June 2007. [32] J.-C. Liu, J.-W. Wang, B.-H. Zeng, and D.-C. Chang, “CPW-fed dual-mode double-square-ring resonators for quad-band filters,” IEEE Microwave Wireless Comp. Lett., vol.20, no.3, pp.142-144, March 2010. [33] C.-M. Cheng and C.-F. Yang, “Develop quad-band (1.57/2.45/3.5/5.2 GHz) bandpass filters on the ceramic substrate,” IEEE Microwave Wireless Comp. Lett., vol. 20, no.5, pp.268-270, April 2010. [34] S. S. Oh and Y. S. Kim, “A compact duplexer for IMT-2000 handsets using microstrip slow wave open-loop resonators with high-impedance meander lines,” in Radio Wireless Conf., pp. 177-180, Aug. 2001. [35] C.-M. Tsai, S.-Y. Lee, C.-C. Chuang, and C.-C. Tsai, “A folded coupled-line structure and its application to filter and diplexer design,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1927-1930, June 2002. [36] E. Goron, J.-P. Coupez, C. Person, Y. Toutain, H. Lattard, and F. Perrot, “Accessing to UMTS filtering specifications using new microstrip miniaturized loop-filters,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1599-1602, June 2003. [37] A. F. Sheta, J. P. Coupez, G. Tanne, S. Toutain, and J. P. Blot, “Miniature microstrip stepped impedance resonator bandpass filters and diplexers for mobile communications,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 607-610, June 1996. [38] D. Puttadilok, D. Eungdamrong, and S. Amornsaensak, “A microstrip diplexer filter using stepped-impedance resonators,” in SICE Annual Conf., pp. 59-62, Aug. 2008. [39] J. Konpang, “A compact diplexer using square open loop with stepped impedance resonators,” Radio Wireless Symp., pp. 91-94, Jan. 2009. [40] B. Strassner and K. Chang, “Wide-band low-loss high-isolation microstrip periodic-stub diplexer for multiple-frequency applications,” IEEE Trans. Microw. Theory and Tech., vol. 49, no. 10, pp. 1818-1820, Oct. 2001. [41] S. Srisathit, S. Patisang, R. Phromloungsri, S. Bunnjaweht, S. Kosulvit, and M. Chongcheawchamnan, “High isolation and compact size microstrip hairpin diplexer,” IEEE Microwave Wireless Comp. Lett., vol. 15, no.2, pp. 101-103, Feb. 2005. [42] C.-F. Chen, T.-Y. Huang, C.-P. Chou, and R.-B. Wu, “Microstrip diplexers design with common resonator sections for compact size, but high isolation,” IEEE Trans. Microw. Theory Tech., vol.54, no. 5, pp.1945-1952, May 2006. [43] A. Garcia-Lampėrez, M. Salazar-Palma, and T. K. Sarkar, “Analytical synthesis of microwave multiport networks,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 455-458, June 2004. [44] G. Macchiarella, and S. Tamiazzo, “Novel approach to the synthesis of microwave diplexers,” IEEE Trans. Microw. Theory Tech., vol.54, no.12, Dec. 2006. [45] J. S. Hong and M. J. Lancaster, Microstrip Filter for RF/Microwave Applications, pp. 129-130, pp. 318-320, New York: Wiley, 2001. [46] J. Lee and K. Sarabandi, “A synthesis method for dual-passband microwave filters,” IEEE Trans. Microw. Theory Tech., vol. 55, no.6, pp. 1163-1170, June, 2007. [47] J. Lee and K. Sarabandi, “Design of triple-passband microwave filters using frequency transformations,” IEEE Trans. Microw. Theory Tech., vol.56, no.1, pp. 187-193, Jan. 2008. [48] R. J. Cameron, “General coupling matrix synthesis methods for Chebyshev filtering functions,” IEEE Trans. Microw. Theory Tech., vol.47, no.4, pp.433-442, April, 1999. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45996 | - |
| dc.description.abstract | 本篇論文主要提出兩種不同方法來改進多頻段濾波器及雙工器的設計。第一個部分是使用低溫共燒陶瓷技術之基板合成波導,研製三頻段濾波器,並延續此觀念設計兩個雙工器;第二部分則使用微帶線,研製兩個四頻帶濾波器。
第一個部份設計的概念是利用基板合成波導所形成的矩形共振腔中各模態之間場型具有正交性,因此兩共振器在不同模態下的耦合係數可藉選取適當的槽線位置去獨立控制。此外,若恰當地選擇饋入點的位置,亦能同時激發多個模態。如共振腔其中一個模態採用分裂型的雙頻響應,即可實現一具有改善頻段可調性之三頻段濾波器,且利用多模態正交性的結果,使用的共振器數目可減到最少。延續此概念,可進一步利用多模態的正交性設計雙工器,兩個模態能經由一適當的饋入點同時被激發,因此輸入端的共振器可共用,而不需額外的輸入匹配電路設計;在輸出端的設計,亦可找到兩個槽線能分別獨立萃取出兩模態的訊號,因此輸出端的共振器亦可共用且還能達到不錯的阻隔性。 第二部份則是針對多頻段濾波器,提出一通用的設計概念,其想法是將單頻段的濾波器藉由一轉換公式,將單頻的極點和零點根據各個頻段的截止頻率點去轉換配置成多頻段的極點和零點。此外,各個頻段可距離相當接近。最後提出兩個四頻段微帶線濾波器來驗證此設計概念。 | zh_TW |
| dc.description.abstract | This thesis aims at the improvement in multiband filters and diplexers by proposing two kinds of new design concepts. Based on the SIW (Substrate Integrate Waveguide)implemented on LTCC (Low Temperature Co-fired Ceramics), the first part designs a tri-band filter and elaborating the concept, two diplexers. The second part designs two microstrip quad-band filters.
The LTCC SIW tri-band filter in the first part utilizes the concept of mode orthogonality in the rectangular cavity, thus the coupling coefficients between modes in two cavities can be controlled independently by the location of slots. Furthermore, multiple modes can be excited simultaneously with the proper feeding position. If one of the modes is applied by split-type dual-band response, a tri-band filter with improved band allocation can be realized with minimized number of resonators. Furthermore, two diplexers are designed by exploiting the multi-modal orthogonality. Two channel can share the same input resonator since two modes can be excited simultaneously; therefore the matching network is not needed in this structure. Also, two orthogonal slots opened in the common output resonator are designed to extract two modes independently and yet with good isolation. The second part proposes a general idea of frequency transformation for multiband filter design. The poles and zeroes of a single band response are transformed to poles and zeros of a multi-band response according to the cutoff frequency of each band. Two microstrip quad-band filters are presented to verify the concept. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:50:49Z (GMT). No. of bitstreams: 1 ntu-99-R97942016-1.pdf: 3163127 bytes, checksum: c7f6136c1aeabf83acbdb5e3cbd8c9db (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員審定書
誌謝 i 中文摘要 iii ABSTRACT v 目錄 vii 圖目錄 xi 表目錄 xv 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 1 1.3 章節內容概述 5 第二章 濾波器基本理論 7 2.1 轉換函數 7 2.1.1 基本定義 7 2.1.2 巴特沃斯響應 8 2.1.3 柴比雪夫響應 8 2.1.4 準橢圓響應 10 2.2 廣義耦合理論 12 2.2.1 電耦合 12 2.2.2 磁耦合 14 2.2.3 混合性耦合 16 2.3 耦合共振器之廣義耦合矩陣 17 2.3.1 迴圈方程式 17 2.3.2 節點方程式 21 2.3.3 廣義耦合矩陣 23 2.4 外部品質因子之基本理論 24 2.4.1 單端負載共振器 24 2.4.2 雙重負載共振器 26 第三章 以基板合成波導之多模態實現之三頻段濾波器 29 3.1 基板合成波導共振器之分析 29 3.1.1 共振器結構及各模態共振頻率 29 3.1.2 共振器內各模態電磁場型分析 31 3.2 三頻段濾波器設計 32 3.2.1 準橢圓單頻帶響應 32 3.2.2 分裂型雙頻帶響應 33 3.2.3 耦合結構及饋入電路 35 3.2.4 結構尺寸及模擬量測結果比較 42 第四章 以基板合成波導之多模態實現雙工器 49 4.1 以基板合成波導之TE101及TE201模態實現雙工器 50 4.1.1 TE101和TE201之電磁場場型分析 50 4.1.2 耦合路徑及架構圖 51 4.1.3 耦合係數及外部品質因子之萃取 52 4.1.4 電路架構及尺寸 60 4.1.5 模擬與量測結果 63 4.2 以基板合成波導之TE201及TE102模態實現雙工器 65 4.2.1 TE201和TE102之電磁場場型分析 65 4.2.2 耦合路徑及架構圖 67 4.2.3 耦合係數及外部品質因子之萃取 67 4.2.4 電路架構及尺寸 73 4.2.5 模擬與量測結果 75 第五章 以頻率轉換實現四頻段帶通濾波器 79 5.1 單頻至多頻之轉換公式 79 5.2 八極四零點之四頻段濾波器 80 5.2.1 耦合矩陣及外部品質因子之求取 81 5.2.2 耦合矩陣之精簡化 83 5.2.3 電路架構及尺寸 86 5.2.4 模擬與量測結果 90 5.3 八極六零點之四頻段濾波器 93 5.3.1 耦合矩陣及外部品質因子之求取 93 5.3.2 耦合矩陣之精簡化 94 5.3.3 電路架構及尺寸 95 5.3.4 模擬與量測結果 101 第六章 結論 105 參考文獻 109 | |
| dc.language.iso | zh-TW | |
| dc.subject | 基板合成波導 | zh_TW |
| dc.subject | 雙工器 | zh_TW |
| dc.subject | 低溫共燒陶瓷 | zh_TW |
| dc.subject | 多模態正交 | zh_TW |
| dc.subject | 頻率轉換 | zh_TW |
| dc.subject | 多頻段濾波器 | zh_TW |
| dc.subject | Frequency transformation | en |
| dc.subject | Multi-band filter | en |
| dc.subject | diplexer | en |
| dc.subject | SIW(Substrate Integrated Waveguide) | en |
| dc.subject | LTCC(Low Temperature Co-fired Ceramic) | en |
| dc.subject | Modal orthogonality | en |
| dc.title | 以多模態及頻率轉換實現之多頻段濾波器及雙工器 | zh_TW |
| dc.title | Multi-band Filters and Diplexers Design by Multi-Mode and
Frequency Transformation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 盧信嘉,毛紹綱,洪子聖,郭仁財 | |
| dc.subject.keyword | 多頻段濾波器,雙工器,基板合成波導,低溫共燒陶瓷,多模態正交,頻率轉換, | zh_TW |
| dc.subject.keyword | Multi-band filter,diplexer,SIW(Substrate Integrated Waveguide),LTCC(Low Temperature Co-fired Ceramic),Modal orthogonality,Frequency transformation, | en |
| dc.relation.page | 113 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-02 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
