請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45989完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 逄愛君 | |
| dc.contributor.author | Yu-Kai Huang | en |
| dc.contributor.author | 黃昱愷 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:50:38Z | - |
| dc.date.available | 2011-08-06 | |
| dc.date.copyright | 2010-08-06 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-02 | |
| dc.identifier.citation | [1] “IEEE WG 802.11, Part 11: Wireless LAN Medium Access Control (MAC) and Physical
layer (PHY) specifications, Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements, IEEE Standards 802.11e, 2005.”. [2] 802.15.3-2003 IEEE Standard for Information Technology-Part 15.3: wireless medium access control (MAC) and physical layer (PHY) specifications for wireless personal area networks (WPANs). 2003. [3] 802.15.4-2003 IEEE Standard for Information Technology-Part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs). 2003. [4] A. Abdrabou and W. Zhuang. Statistical QoS Routing for IEEE 802.11 Multihop Ad hoc Networks. In IEEE Transactions on Wireless Communications, Vol. 8, No. 3, pp. 1542-1552, March 2009. [5] G. Anastasi, M. Conti, E. Gregori, and A. Passarella. Saving Energy in Wi-Fi Hotspots through 802.11 PSM: An Analytical Model. In Workshop on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), March 2004. [6] D. Bertsekas and R. Gallager. Data networks, 2nd ed. Prentice Hall, 1992. 88 [7] A. Bhatia and P. Kaushik. A Cluster Based Minimum Battery Cost AODV Routing Using Multipath Route for ZigBee. In Proc. IEEE International Conference on Networks (ICON), December 2008. [8] G. Bianchi. Performance analysis of the IEEE 802.11 distributed coordination function. In IEEE Journal of Select Area Communications (JSAC), Vol. 18, No.3, pp. 535-547, March 2000. [9] M. Bottigliengo, C. Casetti, C.-F. Chiasserini, and M. Meo. Short-term Fairness for TCP flows in 802.11b WLANs. In IEEE INFOCOM, March 2004. [10] B. Bougard, F. Catthoor, D. C. Daly, A. Chandrakasan, and W. Dehaene. Energy Efficiency of the IEEE 802.15.4 Standard in DenseWireless Microsensor Networks: Modeling and Improvement Perspectives. In Design Automation and Test in Europe Conference and Exhibition (DATE), March 2005. [11] R. Burda and C.Wietfeld. A Distributed and Autonomous Beacon Scheduling Algorithm for IEEE 802.15.4/ZigBee Networks. In Proc. IEEE Internatonal Conference on Mobile Adhoc and Sensor Systems (MASS), October 2007. [12] L. X. Cai, X. Shen, J. W. Mark, and Y. Xiao. Voice capacity analysis of WLAN with unbalanced traffic. In IEEE Trans. on Vehicular Technology, Vol. 55, pp. 752-761, May 2006. [13] Chipcon. 2004. 2.4 GHz IEEE 802.15.4/Zigbee-ready RF transceiver. http://www.chipcon.com/. [14] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. The MIT Press, 2001. 89 [15] F. Cuomo, S. Della Luna, U. Monaco, and F. Melodia. Routing in ZigBee: Benefits from Exploiting the IEEE 802.15.4 Association Tree. In Proc. IEEE International Conference on Communications (ICC), June 2007. [16] P. Djukic and S. Valaee. Reliable and Energy Efficient Transport Layer for Sensor Networks. In IEEE Globe Communications Conference (Globecom), November 2006. [17] F. Y. Edgeworth. The Law of Error. Transactions of the Cambridge Philosophical Society, 1905. [18] S. Pollin et al. Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer. In IEEE Trans. on Wireless Communications, Vol. 7, Issue 9, September 2008. [19] J. Garcia and T. Falck. Quality of Service for IEEE 802.15.4-basedWireless Body Sensor Networks. In Proc. International Conference on Pervasive Computing Technologies for Healthcare, August 2009. [20] J. A. Gutierrez. On the use of IEEE 802.15.4 to enable wireless sensor networks in building automation. In IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), September 2004. [21] J. Han. Global Optimization of ZigBee Parameters for End-to-End Deadline Guarantee of Real-Time Data. In IEEE Sensor Journal, Vol. 9, No. 5, pp. 512-514, May 2009. [22] Y. Hong, H. Kim, H. Park, and D. Kim. Adaptive GTS allocation scheme to support QoS and multiple devices in 802.15.4. In Proc. International Conference on Advanced Communication Technology, April 2009. 90 [23] P. Jacquet, A. Naimi, and G. Rodolakis. Asymptotic Delay Analysis for Cross-layer Delay-based Routing in Ad hoc Networks. In Proc. ACM International Conference on Modeling, Analysis and Simulation ofWireless and Mobile Systems (MSWIM), Vol. 2007, May 2007. [24] J. Jeon, J.W. Lee, J.Y. Ha, andW.H. Kwon. DCA: Duty-Cycle Adaptation Algorithm for IEEE 802.15.4 Beacon-Enabled Networks. In IEEE Vehicular Technology Conference (VTC), Spring 2007. [25] N. L. Johnson and S. Kotz. Continuous Univariate Distributions-1. New York: John Wiley & Sons, 1970. [26] T. Kim, D. Kim, N. Park, S. Yoo, and T.S. Lopez. Shortcut Tree Routing in ZigBee Networks. In Proc. International Symposium onWireless Pervasive Computing (ISWPC), Febrary 2007. [27] L. Kleinrock. Queueing Systems. John Wiley & Sons, 1975. [28] A. Koubaa, M. Alves, and E. Tovar. Modeling andWorst-Case Dimensioning of Cluster- Tree Wireless Sensor Networks. In IEEE International Real-Time Systems Symposium (RTSS), December 2006. [29] J.-S. Lee. Performance evaluation of IEEE 802.15.4 for low-rate wireless personal area networks. In IEEE Trans. on Consumer Electronics, Vol. 52, No.3, pp. 742-749, August 2006. [30] K. K. Lee, S. H. Kim, Y. S. Choi, and H. S. Park. A Mesh Routing Protocol using Cluster Label in the ZigBee Network. In Proc. IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS), October 2006. 91 [31] K. K. Lee, S. H. Kim, and H. S. Park. Cluster Label-based ZigBee Routing Protocol with High Scalability. In Proc. International Conference on Systems and Networks Communications (ICSNC), August 2007. [32] X. Ling, Y. Cheng, J.W. Mark, and X. Shen. Analysis of contention access part of IEEE 802.15.4 MAC. In IEEE Trans. on Wireless Communications, Vol. 7, No. 6, pp. 2340- 2349 June 2008. [33] A. Mishra, C. Na, and D. Rosenburgh. On Scheduling Guaranteed Time Slots for Time Sensitive Transactions in IEEE 802.15.4 Networks. In Proc. IEEE Military Communications Conference, February 2007. [34] J. Miˇsi’c, S. Shaf, and V. B. Miˇsi’c. Performance of a beacon enabled IEEE 802.15.4 cluster with downlink and uplink traffic. In IEEE Trans. on Parallel and Distributed Systems, Vol. 17, pp. 361-376, April 2006. [35] M. Neugebauer, J. Plonnigs, and K. Kabitzsch. A New Beacon Order Adaptation Algorithm for IEEE 802.15.4 Networks. In European Workshop on Wireless Sensor Networks (EWSN), January 2005. [36] X. Ning and C. G. Cassandras. Dynamic Sleep Time Control in Event-Driven Wireless Sensor Networks. In IEEE Conference on Decision and Control (CDC), December 2006. [37] I. Ramachandran, A. Das, and S. Roy. Analysis of contention access part of IEEE 802.15.4 MAC. In ACM Trans. on Sensor Networks, Vol. 14, August 2007. [38] S. M. Ross. Introduction to Probability Models. New York: Academic, 1985. 92 [39] A. Saeyoung, J. Cho, and S. An. Slotted Beacon Scheduling Using ZigBee Cskip Mechanism. In Proc. International Conference on Sensor Technologies and Applications, August 2008. [40] T. Semprebom, C. Montez, R. Moraes, F. Vasques, and R. Custodio. Distributed DBP: A (m,k)-firm based distributed approach for QoS provision in IEEE 802.15.4 networks. In Proc. IEEE Conference on Emerging Technologies and Factory Automation, December 2009. [41] S.-T. Sheu, Y.-Y. Shih, and L.-W Chen. An adaptive interleaving access scheme (IAS) for IEEE 802.15.4 WPANs. In IEEE Vehicular Technology Conference (VTC), Spring 2005. [42] F. Shu, T. Sakurai, H. L. Vu, and M. Zukerman. Optimizing the IEEE 802.15.4 MAC. In IEEE Region 10 Conference (TENCON), November 2006. [43] F. Shu, T. Sakurai, M. Zukerman, and H. L. Vu. Packet Loss Analysis of the IEEE 802.15.4 MAC without Acknowledgements. In IEEE Communication Letters, Vol. 11, pp.79-81, January 2007. [44] P. Si, H. Ji, F.R. Yu, , and G. Yue;. IEEE 802.11 DCF PSM Model and a Novel Downlink Access Scheme. In IEEE Wireless Communications and Networking Conference (WCNC), April 2008. [45] Bluetooth SIG. Bluetooth Specification. 1999. [46] J. Song, J. Ryoo, S. Kim, J. Kim, H. Kim, and P. Mah. A Dynamic GTS Allocation Algorithm in IEEE 802.15.4 for QoS guaranteed Real-time Applications. In Proc. IEEE International Symposium on Consumer Electronics (ISCE), November 2007. 93 [47] M.-Y. Chung T.-J Lee, H.-R. Lee. MAC throughput limit analysis of slotted CSMA/CA in IEEE 802.15.4 WPAN. In IEEE Communications Letters, Vol. 10, pp. 561-563, July 2006. [48] Z. Tao, S. Panwar, D. Gu, and J. Zhang. Performance analysis and a proposed improvement for the IEEE 802.15.4 contention access period. In IEEE Wireless Communications and Networking Conference (WCNC), 2006. [49] The NS-2 Simulator. http://www.isi.edu/nsnam/ns/. [50] Y.-C Tseng, C.-S Hsu, and T.-Y Hsieh. Power-saving protocols for IEEE 802.11-based multi-hop ad hoc networks. In IEEE INFOCOM, June 2002. [51] Y.-C. Tseng and M.-S. Pan. Quick Convergecast in ZigBee Beacon-Enabled Tree-Based Wireless Sensor Networks. In Computer Communications, Vol. 31, No. 5, pp. 999-1011, Mar. 2008. [52] X. Xu, D. Yuan, and J. Wan. An Enhanced Routing Protocol for ZigBee/IEEE 802.15.4 Wireless Networks. In Proc. International Conference on Future Generation Communication and Networking, December 2008. [53] Y. Yamao and S. Takagishi. Time Shift Grouping Access in IEEE 802.15.4 MAC Beacon Mode for Layered-Tree Networks. In Proc. IEEE Consumer Communications and Networking Conference (CCNC), January 2008. [54] S. Yin, Y. Xiong, Q. Zhang, and X. Lin. Traffic-aware Routing for Realtime Communications in Wireless Multi-hop Networks. In Wiley Wireless Communication on Mobile Computing, Vol. 6, No. 6, pp. 825-843, August 2006. 94 [55] M. Youn, Y. Oh, J. Lee, and Y. Kim. IEEE 802.15.4 Based QoS Support Slotted CSMA/CA MAC for Wireless Sensor Networks. In Proc. International Conference on Sensor Technologies and Applications, December 2007. [56] Y. Zhang. Performance Modeling of Energy Management Mechanism in IEEE 802.16e Mobile WiMAX. In IEEE Wireless Communications and Networking Conference (WCNC), March 2007. [57] Zigbee Alliance. http://www.zigbee.org. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45989 | - |
| dc.description.abstract | ZigBee是一個無線個人區域網路的通訊標準,具有極低成本、極低複雜度、極為省電的特性。在眾多ZigBee網路拓樸中,Cluster-tree是特別適用於低耗電和低複雜度的無線感測網路,因為這樣的網路支援ZigBee的省電運作模式和輕量路由。這篇論文的主要目的是針對ZigBee Cluster-tree網路達成效能的最佳化。首先,本篇論文考量ZigBee的小範圍Cluster-tree網路,提出了一個可支援general traffic distribution的分析系統,針對其獨有的省電運作模式作一個全盤的效能分析。本篇論文接著延伸至大範圍的ZigBee網路。針對吞吐量最佳化的議題,提出了一個以養父母概念為基底的架構,可增加頻寬的使用量且不會造成多餘的訊息交換。為了在這個架構上面達到吞吐量最佳化,本研究模型化了一個節點限制的最大流量問題,並針對這個問題提出了一個可完全套用於ZigBee的分散式演算法,並證明此演算法具有收歛性且可以達到最佳解。針對同樣的大範圍ZigBee網路,本篇論文最後提出一個提供服務品質保證的架構。延用此論文的第一個部份研究成果,此架構能夠針對general traffic distribution的即時網路流量來源,達到機率式的傳輸延遲保證。經過一連串的網路模擬以及完整數學分析模型,本篇論文所提出的改進方法已被驗證的確可達到顯著的效能提升。 | zh_TW |
| dc.description.abstract | ZigBee, a unique communication standard designed for low-rate wireless personal area networks, has extremely low complexity, cost, and power consumption for wireless connectivity of inexpensive, portable, and moving devices. Among the well-known ZigBee topologies, the cluster-tree is especially suitable for low-power and low-cost wireless sensor networks due to its support of power saving operation and light-weight routing. The objective of this dissertation is to optimize the performance for ZigBee cluster-tree networks. This dissertation starts with the consideration of star networks, i.e., small-scale cluster-tree networks, for ZigBee. The low-power operation of a star-based ZigBee network follows the IEEE 802.15.4 specification. A comprehensive analysis for low-power operation for IEEE 802.15.4 is conducted. Specifically, an analytical model which can accommodate a general traffic distribution is developed. This dissertation then extends the performance study for ZigBee to accommodate large-scale cluster-tree networks. For throughput optimization, an adoptive-parent-based framework is presented for a ZigBee cluster-tree network to increase the bandwidth utilization without any extra message exchange. To optimize the throughput in the framework, a vertex-constraint maximum flow problem is formulated, and a distributed algorithm with full compatibility of the ZigBee standard is developed. This dissertation is concluded by developing a QoS-oriented framework to provide stochastic QoS guarantee for urgent information delivery in ZigBee cluster-tree networks. This framework can accommodate a general traffic model extended by our first work for IEEE 802.15.4 to adapt diverse traffic characteristics in various applications. The capabilities of the proposed approaches are demonstrated by a series of experiments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:50:38Z (GMT). No. of bitstreams: 1 ntu-99-D94944009-1.pdf: 659655 bytes, checksum: 8251a9e41b622ed07c48e773be41eb05 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Abstract iii
Acknowledgment iv List of Tables vi List of Figures vii 1 Introduction 1 1.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 The Analysis of Low-Power Operation for IEEE 802.15.4Wireless Networks 12 2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 IEEE 802.15.4 Low-Power Operation . . . . . . . . . . . . . . . . . . . . . 13 2.3 Analytical Model for Low-power Operation . . . . . . . . . . . . . . . . . . 15 2.3.1 Analytical Model Overview . . . . . . . . . . . . . . . . . . . . . . 15 2.3.2 Modeling IEEE 802.15.4 MAC Behavior . . . . . . . . . . . . . . . 17 2.3.3 Modeling Buffered Packets . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.4 Derivation of System Performance Measures . . . . . . . . . . . . . 23 2.4 Simulations and Numerical Results . . . . . . . . . . . . . . . . . . . . . . . 27 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 Distributed Throughput Optimization for ZigBee Cluster-Tree Networks 36 3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2 Distributed Throughput Optimization in Adoptive-parent-based Framework . 37 3.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.2 A Distributed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.3 The Properties of Algorithm PPR . . . . . . . . . . . . . . . . . . . 48 3.3 Implementation of Adoptive-parent-based Framework . . . . . . . . . . . . . 53 3.3.1 The Determination of Adoptive Parents . . . . . . . . . . . . . . . . 54 3.3.2 The Implementation of Algorithm PPR . . . . . . . . . . . . . . . . 57 3.4 Simulations and Numerical Results . . . . . . . . . . . . . . . . . . . . . . . 59 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4 Stochastic Delay Guarantees in ZigBee Cluster-Tree Networks 68 4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2 The Analytical Model for Stochastic Delay Guarantee . . . . . . . . . . . . . 69 4.2.1 Modeling of Packet Arrivals . . . . . . . . . . . . . . . . . . . . . . 70 4.2.2 Modeling of Packet Transmissions . . . . . . . . . . . . . . . . . . . 72 4.2.3 Modeling of the End-to-End Packet Latency . . . . . . . . . . . . . . 74 4.3 The Stochastic QoS-Oriented Framework . . . . . . . . . . . . . . . . . . . 75 4.3.1 Traffic Redirection . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.3.2 QoS Admission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5 Conclusion and Future Work 86 Bibliography 88 | |
| dc.language.iso | en | |
| dc.subject | 無線個人區域網路 | zh_TW |
| dc.subject | 無線感測網路 | zh_TW |
| dc.subject | Wireless Personal Area Networks | en |
| dc.subject | ZigBee | en |
| dc.subject | Wireless Sensor Networks | en |
| dc.title | ZigBee網路之效能最佳化 | zh_TW |
| dc.title | Performance Optimization for ZigBee Cluster-tree Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 郭大維,周承復,魏宏宇,廖婉君,陳曉華,沈學民,楊竹星 | |
| dc.subject.keyword | 無線個人區域網路,無線感測網路, | zh_TW |
| dc.subject.keyword | ZigBee,Wireless Personal Area Networks,Wireless Sensor Networks, | en |
| dc.relation.page | 99 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-02 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 644.19 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
