Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45989
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor逄愛君
dc.contributor.authorYu-Kai Huangen
dc.contributor.author黃昱愷zh_TW
dc.date.accessioned2021-06-15T04:50:38Z-
dc.date.available2011-08-06
dc.date.copyright2010-08-06
dc.date.issued2010
dc.date.submitted2010-08-02
dc.identifier.citation[1] “IEEE WG 802.11, Part 11: Wireless LAN Medium Access Control (MAC) and Physical
layer (PHY) specifications, Amendment 8: Medium Access Control (MAC) Quality of
Service Enhancements, IEEE Standards 802.11e, 2005.”.
[2] 802.15.3-2003 IEEE Standard for Information Technology-Part 15.3: wireless medium
access control (MAC) and physical layer (PHY) specifications for wireless personal area
networks (WPANs). 2003.
[3] 802.15.4-2003 IEEE Standard for Information Technology-Part 15.4: wireless medium
access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal
area networks (LR-WPANs). 2003.
[4] A. Abdrabou and W. Zhuang. Statistical QoS Routing for IEEE 802.11 Multihop Ad
hoc Networks. In IEEE Transactions on Wireless Communications, Vol. 8, No. 3, pp.
1542-1552, March 2009.
[5] G. Anastasi, M. Conti, E. Gregori, and A. Passarella. Saving Energy in Wi-Fi Hotspots
through 802.11 PSM: An Analytical Model. In Workshop on Modeling and Optimization
in Mobile, Ad Hoc and Wireless Networks (WiOpt), March 2004.
[6] D. Bertsekas and R. Gallager. Data networks, 2nd ed. Prentice Hall, 1992.
88
[7] A. Bhatia and P. Kaushik. A Cluster Based Minimum Battery Cost AODV Routing
Using Multipath Route for ZigBee. In Proc. IEEE International Conference on Networks
(ICON), December 2008.
[8] G. Bianchi. Performance analysis of the IEEE 802.11 distributed coordination function.
In IEEE Journal of Select Area Communications (JSAC), Vol. 18, No.3, pp. 535-547,
March 2000.
[9] M. Bottigliengo, C. Casetti, C.-F. Chiasserini, and M. Meo. Short-term Fairness for TCP
flows in 802.11b WLANs. In IEEE INFOCOM, March 2004.
[10] B. Bougard, F. Catthoor, D. C. Daly, A. Chandrakasan, and W. Dehaene. Energy Efficiency
of the IEEE 802.15.4 Standard in DenseWireless Microsensor Networks: Modeling
and Improvement Perspectives. In Design Automation and Test in Europe Conference
and Exhibition (DATE), March 2005.
[11] R. Burda and C.Wietfeld. A Distributed and Autonomous Beacon Scheduling Algorithm
for IEEE 802.15.4/ZigBee Networks. In Proc. IEEE Internatonal Conference on Mobile
Adhoc and Sensor Systems (MASS), October 2007.
[12] L. X. Cai, X. Shen, J. W. Mark, and Y. Xiao. Voice capacity analysis of WLAN with
unbalanced traffic. In IEEE Trans. on Vehicular Technology, Vol. 55, pp. 752-761, May
2006.
[13] Chipcon. 2004. 2.4 GHz IEEE 802.15.4/Zigbee-ready RF transceiver.
http://www.chipcon.com/.
[14] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 2001.
89
[15] F. Cuomo, S. Della Luna, U. Monaco, and F. Melodia. Routing in ZigBee: Benefits from
Exploiting the IEEE 802.15.4 Association Tree. In Proc. IEEE International Conference
on Communications (ICC), June 2007.
[16] P. Djukic and S. Valaee. Reliable and Energy Efficient Transport Layer for Sensor Networks.
In IEEE Globe Communications Conference (Globecom), November 2006.
[17] F. Y. Edgeworth. The Law of Error. Transactions of the Cambridge Philosophical Society,
1905.
[18] S. Pollin et al. Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium
Access Layer. In IEEE Trans. on Wireless Communications, Vol. 7, Issue 9, September
2008.
[19] J. Garcia and T. Falck. Quality of Service for IEEE 802.15.4-basedWireless Body Sensor
Networks. In Proc. International Conference on Pervasive Computing Technologies for
Healthcare, August 2009.
[20] J. A. Gutierrez. On the use of IEEE 802.15.4 to enable wireless sensor networks in
building automation. In IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC), September 2004.
[21] J. Han. Global Optimization of ZigBee Parameters for End-to-End Deadline Guarantee
of Real-Time Data. In IEEE Sensor Journal, Vol. 9, No. 5, pp. 512-514, May 2009.
[22] Y. Hong, H. Kim, H. Park, and D. Kim. Adaptive GTS allocation scheme to support
QoS and multiple devices in 802.15.4. In Proc. International Conference on Advanced
Communication Technology, April 2009.
90
[23] P. Jacquet, A. Naimi, and G. Rodolakis. Asymptotic Delay Analysis for Cross-layer
Delay-based Routing in Ad hoc Networks. In Proc. ACM International Conference on
Modeling, Analysis and Simulation ofWireless and Mobile Systems (MSWIM), Vol. 2007,
May 2007.
[24] J. Jeon, J.W. Lee, J.Y. Ha, andW.H. Kwon. DCA: Duty-Cycle Adaptation Algorithm for
IEEE 802.15.4 Beacon-Enabled Networks. In IEEE Vehicular Technology Conference
(VTC), Spring 2007.
[25] N. L. Johnson and S. Kotz. Continuous Univariate Distributions-1. New York: John
Wiley & Sons, 1970.
[26] T. Kim, D. Kim, N. Park, S. Yoo, and T.S. Lopez. Shortcut Tree Routing in ZigBee
Networks. In Proc. International Symposium onWireless Pervasive Computing (ISWPC),
Febrary 2007.
[27] L. Kleinrock. Queueing Systems. John Wiley & Sons, 1975.
[28] A. Koubaa, M. Alves, and E. Tovar. Modeling andWorst-Case Dimensioning of Cluster-
Tree Wireless Sensor Networks. In IEEE International Real-Time Systems Symposium
(RTSS), December 2006.
[29] J.-S. Lee. Performance evaluation of IEEE 802.15.4 for low-rate wireless personal area
networks. In IEEE Trans. on Consumer Electronics, Vol. 52, No.3, pp. 742-749, August
2006.
[30] K. K. Lee, S. H. Kim, Y. S. Choi, and H. S. Park. A Mesh Routing Protocol using Cluster
Label in the ZigBee Network. In Proc. IEEE International Conference on Mobile Adhoc
and Sensor Systems (MASS), October 2006.
91
[31] K. K. Lee, S. H. Kim, and H. S. Park. Cluster Label-based ZigBee Routing Protocol with
High Scalability. In Proc. International Conference on Systems and Networks Communications
(ICSNC), August 2007.
[32] X. Ling, Y. Cheng, J.W. Mark, and X. Shen. Analysis of contention access part of IEEE
802.15.4 MAC. In IEEE Trans. on Wireless Communications, Vol. 7, No. 6, pp. 2340-
2349 June 2008.
[33] A. Mishra, C. Na, and D. Rosenburgh. On Scheduling Guaranteed Time Slots for Time
Sensitive Transactions in IEEE 802.15.4 Networks. In Proc. IEEE Military Communications
Conference, February 2007.
[34] J. Miˇsi’c, S. Shaf, and V. B. Miˇsi’c. Performance of a beacon enabled IEEE 802.15.4
cluster with downlink and uplink traffic. In IEEE Trans. on Parallel and Distributed
Systems, Vol. 17, pp. 361-376, April 2006.
[35] M. Neugebauer, J. Plonnigs, and K. Kabitzsch. A New Beacon Order Adaptation Algorithm
for IEEE 802.15.4 Networks. In European Workshop on Wireless Sensor Networks
(EWSN), January 2005.
[36] X. Ning and C. G. Cassandras. Dynamic Sleep Time Control in Event-Driven Wireless
Sensor Networks. In IEEE Conference on Decision and Control (CDC), December 2006.
[37] I. Ramachandran, A. Das, and S. Roy. Analysis of contention access part of IEEE
802.15.4 MAC. In ACM Trans. on Sensor Networks, Vol. 14, August 2007.
[38] S. M. Ross. Introduction to Probability Models. New York: Academic, 1985.
92
[39] A. Saeyoung, J. Cho, and S. An. Slotted Beacon Scheduling Using ZigBee Cskip Mechanism.
In Proc. International Conference on Sensor Technologies and Applications, August
2008.
[40] T. Semprebom, C. Montez, R. Moraes, F. Vasques, and R. Custodio. Distributed DBP: A
(m,k)-firm based distributed approach for QoS provision in IEEE 802.15.4 networks. In
Proc. IEEE Conference on Emerging Technologies and Factory Automation, December
2009.
[41] S.-T. Sheu, Y.-Y. Shih, and L.-W Chen. An adaptive interleaving access scheme (IAS)
for IEEE 802.15.4 WPANs. In IEEE Vehicular Technology Conference (VTC), Spring
2005.
[42] F. Shu, T. Sakurai, H. L. Vu, and M. Zukerman. Optimizing the IEEE 802.15.4 MAC. In
IEEE Region 10 Conference (TENCON), November 2006.
[43] F. Shu, T. Sakurai, M. Zukerman, and H. L. Vu. Packet Loss Analysis of the IEEE
802.15.4 MAC without Acknowledgements. In IEEE Communication Letters, Vol. 11,
pp.79-81, January 2007.
[44] P. Si, H. Ji, F.R. Yu, , and G. Yue;. IEEE 802.11 DCF PSM Model and a Novel Downlink
Access Scheme. In IEEE Wireless Communications and Networking Conference
(WCNC), April 2008.
[45] Bluetooth SIG. Bluetooth Specification. 1999.
[46] J. Song, J. Ryoo, S. Kim, J. Kim, H. Kim, and P. Mah. A Dynamic GTS Allocation
Algorithm in IEEE 802.15.4 for QoS guaranteed Real-time Applications. In Proc. IEEE
International Symposium on Consumer Electronics (ISCE), November 2007.
93
[47] M.-Y. Chung T.-J Lee, H.-R. Lee. MAC throughput limit analysis of slotted CSMA/CA
in IEEE 802.15.4 WPAN. In IEEE Communications Letters, Vol. 10, pp. 561-563, July
2006.
[48] Z. Tao, S. Panwar, D. Gu, and J. Zhang. Performance analysis and a proposed improvement
for the IEEE 802.15.4 contention access period. In IEEE Wireless Communications
and Networking Conference (WCNC), 2006.
[49] The NS-2 Simulator. http://www.isi.edu/nsnam/ns/.
[50] Y.-C Tseng, C.-S Hsu, and T.-Y Hsieh. Power-saving protocols for IEEE 802.11-based
multi-hop ad hoc networks. In IEEE INFOCOM, June 2002.
[51] Y.-C. Tseng and M.-S. Pan. Quick Convergecast in ZigBee Beacon-Enabled Tree-Based
Wireless Sensor Networks. In Computer Communications, Vol. 31, No. 5, pp. 999-1011,
Mar. 2008.
[52] X. Xu, D. Yuan, and J. Wan. An Enhanced Routing Protocol for ZigBee/IEEE 802.15.4
Wireless Networks. In Proc. International Conference on Future Generation Communication
and Networking, December 2008.
[53] Y. Yamao and S. Takagishi. Time Shift Grouping Access in IEEE 802.15.4 MAC Beacon
Mode for Layered-Tree Networks. In Proc. IEEE Consumer Communications and
Networking Conference (CCNC), January 2008.
[54] S. Yin, Y. Xiong, Q. Zhang, and X. Lin. Traffic-aware Routing for Realtime Communications
in Wireless Multi-hop Networks. In Wiley Wireless Communication on Mobile
Computing, Vol. 6, No. 6, pp. 825-843, August 2006.
94
[55] M. Youn, Y. Oh, J. Lee, and Y. Kim. IEEE 802.15.4 Based QoS Support Slotted
CSMA/CA MAC for Wireless Sensor Networks. In Proc. International Conference on
Sensor Technologies and Applications, December 2007.
[56] Y. Zhang. Performance Modeling of Energy Management Mechanism in IEEE 802.16e
Mobile WiMAX. In IEEE Wireless Communications and Networking Conference
(WCNC), March 2007.
[57] Zigbee Alliance. http://www.zigbee.org.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45989-
dc.description.abstractZigBee是一個無線個人區域網路的通訊標準,具有極低成本、極低複雜度、極為省電的特性。在眾多ZigBee網路拓樸中,Cluster-tree是特別適用於低耗電和低複雜度的無線感測網路,因為這樣的網路支援ZigBee的省電運作模式和輕量路由。這篇論文的主要目的是針對ZigBee Cluster-tree網路達成效能的最佳化。首先,本篇論文考量ZigBee的小範圍Cluster-tree網路,提出了一個可支援general traffic distribution的分析系統,針對其獨有的省電運作模式作一個全盤的效能分析。本篇論文接著延伸至大範圍的ZigBee網路。針對吞吐量最佳化的議題,提出了一個以養父母概念為基底的架構,可增加頻寬的使用量且不會造成多餘的訊息交換。為了在這個架構上面達到吞吐量最佳化,本研究模型化了一個節點限制的最大流量問題,並針對這個問題提出了一個可完全套用於ZigBee的分散式演算法,並證明此演算法具有收歛性且可以達到最佳解。針對同樣的大範圍ZigBee網路,本篇論文最後提出一個提供服務品質保證的架構。延用此論文的第一個部份研究成果,此架構能夠針對general traffic distribution的即時網路流量來源,達到機率式的傳輸延遲保證。經過一連串的網路模擬以及完整數學分析模型,本篇論文所提出的改進方法已被驗證的確可達到顯著的效能提升。zh_TW
dc.description.abstractZigBee, a unique communication standard designed for low-rate wireless personal area networks, has extremely low complexity, cost, and power consumption for wireless connectivity of inexpensive, portable, and moving devices. Among the well-known ZigBee topologies, the cluster-tree is especially suitable for low-power and low-cost wireless sensor networks due to its support of power saving operation and light-weight routing. The objective of this dissertation is to optimize the performance for ZigBee cluster-tree networks. This dissertation starts with the consideration of star networks, i.e., small-scale cluster-tree networks, for ZigBee. The low-power operation of a star-based ZigBee network follows the IEEE 802.15.4 specification. A comprehensive analysis for low-power operation for IEEE 802.15.4 is conducted. Specifically, an analytical model which can accommodate a general traffic distribution is developed. This dissertation then extends the performance study for ZigBee to accommodate large-scale cluster-tree networks. For throughput optimization, an adoptive-parent-based framework is presented for a ZigBee cluster-tree network to increase the bandwidth utilization without any extra message exchange. To optimize the throughput in the framework, a vertex-constraint maximum flow problem is formulated, and a distributed algorithm with full compatibility of the ZigBee standard is developed. This dissertation is concluded by developing a QoS-oriented framework to provide stochastic QoS guarantee for urgent information delivery in ZigBee cluster-tree networks. This framework can accommodate a general traffic model extended by our first work for IEEE 802.15.4 to adapt diverse traffic characteristics in various applications. The capabilities of the proposed approaches are demonstrated by a series of experiments.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:50:38Z (GMT). No. of bitstreams: 1
ntu-99-D94944009-1.pdf: 659655 bytes, checksum: 8251a9e41b622ed07c48e773be41eb05 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsAbstract iii
Acknowledgment iv
List of Tables vi
List of Figures vii
1 Introduction 1
1.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 The Analysis of Low-Power Operation for IEEE 802.15.4Wireless Networks 12
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 IEEE 802.15.4 Low-Power Operation . . . . . . . . . . . . . . . . . . . . . 13
2.3 Analytical Model for Low-power Operation . . . . . . . . . . . . . . . . . . 15
2.3.1 Analytical Model Overview . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Modeling IEEE 802.15.4 MAC Behavior . . . . . . . . . . . . . . . 17
2.3.3 Modeling Buffered Packets . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Derivation of System Performance Measures . . . . . . . . . . . . . 23
2.4 Simulations and Numerical Results . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3 Distributed Throughput Optimization for ZigBee Cluster-Tree Networks 36
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Distributed Throughput Optimization in Adoptive-parent-based Framework . 37
3.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 A Distributed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.3 The Properties of Algorithm PPR . . . . . . . . . . . . . . . . . . . 48
3.3 Implementation of Adoptive-parent-based Framework . . . . . . . . . . . . . 53
3.3.1 The Determination of Adoptive Parents . . . . . . . . . . . . . . . . 54
3.3.2 The Implementation of Algorithm PPR . . . . . . . . . . . . . . . . 57
3.4 Simulations and Numerical Results . . . . . . . . . . . . . . . . . . . . . . . 59
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4 Stochastic Delay Guarantees in ZigBee Cluster-Tree Networks 68
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 The Analytical Model for Stochastic Delay Guarantee . . . . . . . . . . . . . 69
4.2.1 Modeling of Packet Arrivals . . . . . . . . . . . . . . . . . . . . . . 70
4.2.2 Modeling of Packet Transmissions . . . . . . . . . . . . . . . . . . . 72
4.2.3 Modeling of the End-to-End Packet Latency . . . . . . . . . . . . . . 74
4.3 The Stochastic QoS-Oriented Framework . . . . . . . . . . . . . . . . . . . 75
4.3.1 Traffic Redirection . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.2 QoS Admission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5 Conclusion and Future Work 86
Bibliography 88
dc.language.isoen
dc.subject無線個人區域網路zh_TW
dc.subject無線感測網路zh_TW
dc.subjectWireless Personal Area Networksen
dc.subjectZigBeeen
dc.subjectWireless Sensor Networksen
dc.titleZigBee網路之效能最佳化zh_TW
dc.titlePerformance Optimization for ZigBee Cluster-tree Networksen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee郭大維,周承復,魏宏宇,廖婉君,陳曉華,沈學民,楊竹星
dc.subject.keyword無線個人區域網路,無線感測網路,zh_TW
dc.subject.keywordZigBee,Wireless Personal Area Networks,Wireless Sensor Networks,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2010-08-02
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
644.19 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved