請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45981完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林啟萬 | |
| dc.contributor.author | Yu-Chung Chen | en |
| dc.contributor.author | 陳昱中 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:50:25Z | - |
| dc.date.available | 2010-08-05 | |
| dc.date.copyright | 2010-08-05 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-02 | |
| dc.identifier.citation | [1] G. W. Gross, et al., 'Transparent indium-tin oxide electrode patterns for extracellular, multisite recording in neuronal cultures,' Journal of Neuroscience Methods, vol. 15, pp. 243-252, 1985.
[2] J. Clark and R. Plonsey, 'The extracellular potential field of the single active nerve fiber in a volume conductor,' Biophysical Journal, vol. 8, 1968. [3] C. A. Thomas, et al., 'A miniature microelectrode array to monitor the bioelectric activity of cultured cells,' Experimental Cell Research, vol. 74, pp. 61-66, 1972. [4] J. Pine, 'Recording action potentials from cultured neurons with extracellular microcircuit electrodes,' Journal of Neuroscience Methods, vol. 2, pp. 19-31, 1980. [5] F. O. Morin, et al., 'Investigating neuronal activity with planar microelectrode arrays: achievements and new perspectives,' Journal of Bioscience and Bioengineering, vol. 100, pp. 131-143, 2005. [6] C. D. James, et al., 'Extracellular recordings from patterned neuronal networks using planar microelectrode arrays,' Biomedical Engineering, IEEE Transactions on, vol. 51, pp. 1640-1648, 2004. [7] S. B. Jun, et al., 'Low-density neuronal networks cultured using patterned poly-l-lysine on microelectrode arrays,' Journal of Neuroscience Methods, vol. 160, pp. 317-326, 2007. [8] L. Pan, et al., 'Effects of disinhibition on spatiotemporal pattern of neuronal first recruitment in neuronal networks,' Progress in Natural Science, vol. 19, pp. 615-621, 2009. [9] G. W. Gross, et al., 'The use of neuronal networks on multielectrode arrays as biosensors,' Biosensors and Bioelectronics, vol. 10, pp. 553-567, 1995. [10] J. J. Pancrazio, et al., 'A portable microelectrode array recording system incorporating cultured neuronal networks for neurotoxin detection,' Biosensors and Bioelectronics, vol. 18, pp. 1339-1347, 2003. [11] T. J. O'Shaughnessy and J. J. Pancrazio, 'Broadband detection of environmental neurotoxicants,' Analytical Chemistry, vol. 79, pp. 8838-8845, Dec 1 2007. [12] F. Heer, et al., 'Single-chip microelectronic system to interface with living cells,' Biosensors and Bioelectronics, vol. 22, pp. 2546-2553, 2007. [13] T. Nyberg, et al., 'Ion conducting polymer microelectrodes for interfacing with neural networks,' Journal of Neuroscience Methods, vol. 160, pp. 16-25, 2007. [14] F. T. Jaber, et al., 'Action potential recording from dielectrophoretically positioned neurons inside micro-wells of a planar microelectrode array,' Journal of Neuroscience Methods, vol. 182, pp. 225-235, 2009. [15] J. K. Lim, et al., 'Liposome rupture and contents release over coplanar microelectrode arrays,' Journal of Colloid and Interface Science, vol. 332, pp. 113-121, 2009. [16] W. C. Chang and D. W. Sretavan, 'Single cell and neural process experimentation using laterally applied electrical fields between pairs of closely apposed microelectrodes with vertical sidewalls,' Biosensors and Bioelectronics, vol. 24, pp. 3600-3607, 2009. [17] E. Ben-Jacob and Y. Hanein, 'Carbon nanotube micro-electrodes for neuronal interfacing,' Journal of Materials Chemistry, vol. 18, pp. 5181-5186, 2008. [18] T. M. Pearce, et al., 'Integrated microelectrode array and microfluidics for temperature clamp of sensory neurons in culture,' Lab on a Chip, vol. 5, pp. 97-101, 2005. [19] R. Pizzi, et al., 'Learning in human neural networks on microelectrode arrays,' Biosystems, vol. 88, pp. 1-15, 2007. [20] R. M. R. Pizzi, et al., 'A cultured human neural network operates a robotic actuator,' Biosystems, vol. 95, pp. 137-144, 2009. [21] I. Giaever and C. R. Keese, 'A morphological biosensor for mammalian cells,' Nature, vol. 366, pp. 591-2, Dec 9 1993. [22] C. R. Keese and I. Giaever, 'A biosensor that monitors cell morphology with electrical fields,' Engineering in Medicine and Biology Magazine, IEEE, vol. 13, pp. 402-408, 1994. [23] J. Wegener, et al., 'Electric Cell-Substrate Impedance Sensing (ECIS) as a Noninvasive Means to Monitor the Kinetics of Cell Spreading to Artificial Surfaces,' Experimental Cell Research, vol. 259, pp. 158-166, 2000. [24] A. R. A. Rahman, et al., 'Cell culture monitoring by impedance mapping using a multielectrode scanning impedance spectroscopy system (CellMap),' Physiological Measurement, vol. 29, pp. S227-S239, Jun 2008. [25] S.-P. Lin, et al., 'On-line observation of cell growth in a three-dimensional matrix on surface-modified microelectrode arrays,' Biomaterials, vol. 30, pp. 3110-3117, 2009. [26] S. Arndt, et al., 'Bioelectrical impedance assay to monitor changes in cell shape during apoptosis,' Biosensors & Bioelectronics, vol. 19, pp. 583-594, Jan 15 2004. [27] E. Monroy, et al., 'Effect of Dielectric Layers on the Performance of AlGaN-Based UV Schottky Photodiodes,' physica status solidi (a), vol. 188,pp. 307-310, 2001. [28] S. Hediger, et al., 'Modular microsystem for epithelial cell culture and electrical characterisation,' Biosensors and Bioelectronics, vol. 16, pp. 689-694, 2001. [29] W. Jackson and B. Duling, 'Toxic effects of silver-silver chloride electrodes on vascular smooth muscle,' Circ Res, vol. 53, pp. 105-108, July 1, 1983 1983. [30] O. Choi, et al., 'The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth,' WATER RESEARCH, vol. 42, pp. 3066-3074, 2008. [31] B. J. Polk, et al., 'Ag/AgCl microelectrodes with improved stability for microfluidics,' Sensors and Actuators B: Chemical, vol. 114, pp. 239-247, 2006. [32] X. Jin, et al., 'The electrochemical formation and reduction of a thick AgCl deposition layer on a silver substrate,' Journal of Electroanalytical Chemistry, vol. 542, pp. 85-96, 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45981 | - |
| dc.description.abstract | Microelectrode array (MEA) has been used in cell physiology for many years. It features the non-invasive, long-term, and space resolution method to record cell signals. By applying MEA, the neuron extracellular voltage could be record and the electrophysiology could be further researched.
Cell impedance is another method to evaluate the condition of the cell culture. Previous researches showed that the cell attachment and spread on the electrode could be detected by the change of the impedance. Thus the impedance could be a method to evaluate the condition of the cell growth, proliferation or apoptosis. In this research, microelectrode array has been fabricated by photolithography process. Indium-Tin Oxide (ITO) was chosen as the conducting material for its conductivity and transparency, and was regarded to be non-toxicity for cell culture. The ITO pattern was covered with Silicon-dioxide (SiO2) insulating layer. A large reference electrode was made by Silver/Silver Chloride (Ag/AgCl) on top of the SiO2 layer. Human kidney epithelial cells were cultured on the surface of the MEA. Impedance of the cells was measured from 1 kHz to 100 kHz. High impedance could be measured if the cells attached to the surface in good condition. While the cells grow quite well on the SiO2 covered surface, the AgCl surface had an inhibitive effect on cell attachment and proliferation. Also the measuring process involved input high frequency voltage wave, which might had deteriorated effect on the attached cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:50:25Z (GMT). No. of bitstreams: 1 ntu-99-R97548018-1.pdf: 11287852 bytes, checksum: 52bb385b507204fafa24255bdc523322 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Chapter 1 Introduction ................................................................................................ 1
Chapter 2 Background ................................................................................................ 3 2.1 Microelectrode Array ...................................................................................................... 3 2.2 Cell Impedance .............................................................................................................. 10 Chapter 3 Materials and Methods ............................................................................ 14 3.1 Fabrication of MEA ....................................................................................................... 14 3.1.1 Photolithography process ....................................................................................... 14 3.1.2 ITO pattern ............................................................................................................. 15 3.1.3 Insulating SiO2 layer ............................................................................................... 16 3.1.4 Ag/AgCl reference electrode .................................................................................. 17 3.1.5 Thickness calibration .............................................................................................. 21 3.2 Cell Culture ................................................................................................................... 22 3.3 Impedance measurement ............................................................................................... 23 Chapter 4 Results ....................................................................................................... 25 4.1 Fabrication of MEA ....................................................................................................... 25 4.1.1 ITO pattern ............................................................................................................. 25 4.1.3 Reference electrode ................................................................................................ 34 4.2 Cell Culture ................................................................................................................... 36 4.2.1 First Group culture ................................................................................................. 36 4.2.2 Second Group Culture ............................................................................................ 40 4.3 Impedance Measurement ............................................................................................... 43 4.3.1 Impedance Characteristic ....................................................................................... 43 4.3.2 First Group Impedance ........................................................................................... 44 4.3.3 Second Group Impedance ....................................................................................... 47 Chapter 5 Discussions ................................................................................................ 51 5.1 Fabrication process of MEA .......................................................................................... 51 5.2 Cell Culture on MEA..................................................................................................... 52 5.3 Impedance and Cells...................................................................................................... 56 5.3.1 Impedance in first group ......................................................................................... 56 5.3.2 Impedance in the second group .............................................................................. 59 5.4 Future work ................................................................................................................... 64 Chapter 6 Conclusion ................................................................................................ 66 Reference .................................................................................................................... 67 | |
| dc.language.iso | en | |
| dc.subject | 微電極陣列 | zh_TW |
| dc.subject | 細胞阻抗 | zh_TW |
| dc.subject | Cell Impedance | en |
| dc.subject | Microelectrode Array | en |
| dc.title | 以微電極陣列對細胞阻抗之量測分析 | zh_TW |
| dc.title | Measuring Cell Impedance by Microelectrode Array | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡文聰,楊燿州 | |
| dc.subject.keyword | 微電極陣列,細胞阻抗, | zh_TW |
| dc.subject.keyword | Microelectrode Array,Cell Impedance, | en |
| dc.relation.page | 71 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-02 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 11.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
