Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45981
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林啟萬
dc.contributor.authorYu-Chung Chenen
dc.contributor.author陳昱中zh_TW
dc.date.accessioned2021-06-15T04:50:25Z-
dc.date.available2010-08-05
dc.date.copyright2010-08-05
dc.date.issued2010
dc.date.submitted2010-08-02
dc.identifier.citation[1] G. W. Gross, et al., 'Transparent indium-tin oxide electrode patterns for extracellular, multisite recording in neuronal cultures,' Journal of Neuroscience Methods, vol. 15, pp. 243-252, 1985.
[2] J. Clark and R. Plonsey, 'The extracellular potential field of the single active nerve fiber in a volume conductor,' Biophysical Journal, vol. 8, 1968.
[3] C. A. Thomas, et al., 'A miniature microelectrode array to monitor the bioelectric activity of cultured cells,' Experimental Cell Research, vol. 74, pp. 61-66, 1972.
[4] J. Pine, 'Recording action potentials from cultured neurons with extracellular microcircuit electrodes,' Journal of Neuroscience Methods, vol. 2, pp. 19-31, 1980.
[5] F. O. Morin, et al., 'Investigating neuronal activity with planar microelectrode arrays: achievements and new perspectives,' Journal of Bioscience and Bioengineering, vol. 100, pp. 131-143, 2005.
[6] C. D. James, et al., 'Extracellular recordings from patterned neuronal networks using planar microelectrode arrays,' Biomedical Engineering, IEEE Transactions on, vol. 51, pp. 1640-1648, 2004.
[7] S. B. Jun, et al., 'Low-density neuronal networks cultured using patterned poly-l-lysine on microelectrode arrays,' Journal of Neuroscience Methods, vol. 160, pp. 317-326, 2007.
[8] L. Pan, et al., 'Effects of disinhibition on spatiotemporal pattern of neuronal first recruitment in neuronal networks,' Progress in Natural Science, vol. 19, pp. 615-621, 2009.
[9] G. W. Gross, et al., 'The use of neuronal networks on multielectrode arrays as biosensors,' Biosensors and Bioelectronics, vol. 10, pp. 553-567, 1995.
[10] J. J. Pancrazio, et al., 'A portable microelectrode array recording system incorporating cultured neuronal networks for neurotoxin detection,' Biosensors and Bioelectronics, vol. 18, pp. 1339-1347, 2003.
[11] T. J. O'Shaughnessy and J. J. Pancrazio, 'Broadband detection of environmental neurotoxicants,' Analytical Chemistry, vol. 79, pp. 8838-8845, Dec 1 2007.
[12] F. Heer, et al., 'Single-chip microelectronic system to interface with living cells,' Biosensors and Bioelectronics, vol. 22, pp. 2546-2553, 2007.
[13] T. Nyberg, et al., 'Ion conducting polymer microelectrodes for interfacing with neural networks,' Journal of Neuroscience Methods, vol. 160, pp. 16-25, 2007.
[14] F. T. Jaber, et al., 'Action potential recording from dielectrophoretically positioned neurons inside micro-wells of a planar microelectrode array,' Journal of Neuroscience Methods, vol. 182, pp. 225-235, 2009.
[15] J. K. Lim, et al., 'Liposome rupture and contents release over coplanar microelectrode arrays,' Journal of Colloid and Interface Science, vol. 332, pp. 113-121, 2009.
[16] W. C. Chang and D. W. Sretavan, 'Single cell and neural process experimentation using laterally applied electrical fields between pairs of closely apposed microelectrodes with vertical sidewalls,' Biosensors and Bioelectronics, vol. 24, pp. 3600-3607, 2009.
[17] E. Ben-Jacob and Y. Hanein, 'Carbon nanotube micro-electrodes for neuronal interfacing,' Journal of Materials Chemistry, vol. 18, pp. 5181-5186, 2008.
[18] T. M. Pearce, et al., 'Integrated microelectrode array and microfluidics for temperature clamp of sensory neurons in culture,' Lab on a Chip, vol. 5, pp. 97-101, 2005.
[19] R. Pizzi, et al., 'Learning in human neural networks on microelectrode arrays,' Biosystems, vol. 88, pp. 1-15, 2007.
[20] R. M. R. Pizzi, et al., 'A cultured human neural network operates a robotic actuator,' Biosystems, vol. 95, pp. 137-144, 2009.
[21] I. Giaever and C. R. Keese, 'A morphological biosensor for mammalian cells,' Nature, vol. 366, pp. 591-2, Dec 9 1993.
[22] C. R. Keese and I. Giaever, 'A biosensor that monitors cell morphology with electrical fields,' Engineering in Medicine and Biology Magazine, IEEE, vol. 13, pp. 402-408, 1994.
[23] J. Wegener, et al., 'Electric Cell-Substrate Impedance Sensing (ECIS) as a Noninvasive Means to Monitor the Kinetics of Cell Spreading to Artificial Surfaces,' Experimental Cell Research, vol. 259, pp. 158-166, 2000.
[24] A. R. A. Rahman, et al., 'Cell culture monitoring by impedance mapping using a multielectrode scanning impedance spectroscopy system (CellMap),' Physiological Measurement, vol. 29, pp. S227-S239, Jun 2008.
[25] S.-P. Lin, et al., 'On-line observation of cell growth in a three-dimensional matrix on surface-modified microelectrode arrays,' Biomaterials, vol. 30, pp. 3110-3117, 2009.
[26] S. Arndt, et al., 'Bioelectrical impedance assay to monitor changes in cell shape during apoptosis,' Biosensors & Bioelectronics, vol. 19, pp. 583-594, Jan 15 2004.
[27] E. Monroy, et al., 'Effect of Dielectric Layers on the Performance of AlGaN-Based UV Schottky Photodiodes,' physica status solidi (a), vol. 188,pp. 307-310, 2001.
[28] S. Hediger, et al., 'Modular microsystem for epithelial cell culture and electrical characterisation,' Biosensors and Bioelectronics, vol. 16, pp. 689-694, 2001.
[29] W. Jackson and B. Duling, 'Toxic effects of silver-silver chloride electrodes on vascular smooth muscle,' Circ Res, vol. 53, pp. 105-108, July 1, 1983 1983.
[30] O. Choi, et al., 'The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth,' WATER RESEARCH, vol. 42, pp. 3066-3074, 2008.
[31] B. J. Polk, et al., 'Ag/AgCl microelectrodes with improved stability for microfluidics,' Sensors and Actuators B: Chemical, vol. 114, pp. 239-247, 2006.
[32] X. Jin, et al., 'The electrochemical formation and reduction of a thick AgCl deposition layer on a silver substrate,' Journal of Electroanalytical Chemistry, vol. 542, pp. 85-96, 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45981-
dc.description.abstractMicroelectrode array (MEA) has been used in cell physiology for many years. It features the non-invasive, long-term, and space resolution method to record cell signals. By applying MEA, the neuron extracellular voltage could be record and the electrophysiology could be further researched.
Cell impedance is another method to evaluate the condition of the cell culture. Previous researches showed that the cell attachment and spread on the electrode could be detected by the change of the impedance. Thus the impedance could be a method to evaluate the condition of the cell growth, proliferation or apoptosis.
In this research, microelectrode array has been fabricated by photolithography process. Indium-Tin Oxide (ITO) was chosen as the conducting material for its conductivity and transparency, and was regarded to be non-toxicity for cell culture. The ITO pattern was covered with Silicon-dioxide (SiO2) insulating layer. A large reference electrode was made by Silver/Silver Chloride (Ag/AgCl) on top of the SiO2 layer.
Human kidney epithelial cells were cultured on the surface of the MEA. Impedance of the cells was measured from 1 kHz to 100 kHz. High impedance could be measured if the cells attached to the surface in good condition. While the cells grow quite well on the SiO2 covered surface, the AgCl surface had an inhibitive effect on cell attachment and proliferation. Also the measuring process involved input high frequency voltage wave, which might had deteriorated effect on the attached cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:50:25Z (GMT). No. of bitstreams: 1
ntu-99-R97548018-1.pdf: 11287852 bytes, checksum: 52bb385b507204fafa24255bdc523322 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsChapter 1 Introduction ................................................................................................ 1
Chapter 2 Background ................................................................................................ 3
2.1 Microelectrode Array ...................................................................................................... 3
2.2 Cell Impedance .............................................................................................................. 10
Chapter 3 Materials and Methods ............................................................................ 14
3.1 Fabrication of MEA ....................................................................................................... 14
3.1.1 Photolithography process ....................................................................................... 14
3.1.2 ITO pattern ............................................................................................................. 15
3.1.3 Insulating SiO2 layer ............................................................................................... 16
3.1.4 Ag/AgCl reference electrode .................................................................................. 17
3.1.5 Thickness calibration .............................................................................................. 21
3.2 Cell Culture ................................................................................................................... 22
3.3 Impedance measurement ............................................................................................... 23
Chapter 4 Results ....................................................................................................... 25
4.1 Fabrication of MEA ....................................................................................................... 25
4.1.1 ITO pattern ............................................................................................................. 25
4.1.3 Reference electrode ................................................................................................ 34
4.2 Cell Culture ................................................................................................................... 36
4.2.1 First Group culture ................................................................................................. 36
4.2.2 Second Group Culture ............................................................................................ 40
4.3 Impedance Measurement ............................................................................................... 43
4.3.1 Impedance Characteristic ....................................................................................... 43
4.3.2 First Group Impedance ........................................................................................... 44
4.3.3 Second Group Impedance ....................................................................................... 47
Chapter 5 Discussions ................................................................................................ 51
5.1 Fabrication process of MEA .......................................................................................... 51
5.2 Cell Culture on MEA..................................................................................................... 52
5.3 Impedance and Cells...................................................................................................... 56
5.3.1 Impedance in first group ......................................................................................... 56
5.3.2 Impedance in the second group .............................................................................. 59
5.4 Future work ................................................................................................................... 64
Chapter 6 Conclusion ................................................................................................ 66
Reference .................................................................................................................... 67
dc.language.isoen
dc.subject微電極陣列zh_TW
dc.subject細胞阻抗zh_TW
dc.subjectCell Impedanceen
dc.subjectMicroelectrode Arrayen
dc.title以微電極陣列對細胞阻抗之量測分析zh_TW
dc.titleMeasuring Cell Impedance by Microelectrode Arrayen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡文聰,楊燿州
dc.subject.keyword微電極陣列,細胞阻抗,zh_TW
dc.subject.keywordMicroelectrode Array,Cell Impedance,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2010-08-02
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
11.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved