請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45915
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳燕惠(Yen-Hui Chen) | |
dc.contributor.author | Yun-Chen Tsao | en |
dc.contributor.author | 曹芸甄 | zh_TW |
dc.date.accessioned | 2021-06-15T04:48:46Z | - |
dc.date.available | 2015-09-13 | |
dc.date.copyright | 2010-09-13 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-03 | |
dc.identifier.citation | 1. Stamler, J.; Daviglus, M. L.; Garside, D. B.; Dyer, A. R.; Greenland, P.; Neaton, J. D., Relationship of baseline serum cholesterol levels in 3 large cohorts of younger men to long-term coronary, cardiovascular, and all-cause mortality and to longevity. Jama. 2000, 284 (3), 311-8.
2. Steinbrecher, U. P.; Zhang, H. F.; Lougheed, M., Role of oxidatively modified LDL in atherosclerosis. Free Radic Biol Med 1990, 9 (2), 155-68. 3. Huang, Y.; von Eckardstein, A.; Wu, S.; Maeda, N.; Assmann, G., A plasma lipoprotein containing only apolipoprotein E and with gamma mobility on electrophoresis releases cholesterol from cells. Proc Natl Acad Sci U S A. 1994, 91 (5), 1834-8. 4. von Eckardstein, A.; Huang, Y.; Wu, S.; Sarmadi, A. S.; Schwarz, S.; Steinmetz, A.; Assmann, G., Lipoproteins containing apolipoprotein A-IV but not apolipoprotein A-I take up and esterify cell-derived cholesterol in plasma. Arterioscler Thromb Vasc Biol. 1995, 15 (10), 1755-63. 5. Rader, D. J.; Alexander, E. T.; Weibel, G. L.; Billheimer, J.; Rothblat, G. H., The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res. 2009, 50 (Suppl), S189-94. Epub 2008 Dec 8. 6. Broccardo, C.; Luciani, M.; Chimini, G., The ABCA subclass of mammalian transporters. Biochim Biophys Acta. 1999, 1461 (2), 395-404. 7. Brooks-Wilson, A.; Marcil, M.; Clee, S. M.; Zhang, L. H.; Roomp, K.; van Dam, M.; Yu, L.; Brewer, C.; Collins, J. A.; Molhuizen, H. O.; Loubser, O.; Ouelette, B. F.; Fichter, K.; Ashbourne-Excoffon, K. J.; Sensen, C. W.; Scherer, S.; Mott, S.; Denis, M.; Martindale, D.; Frohlich, J.; Morgan, K.; Koop, B.; Pimstone, S.; Kastelein, J. J.; Genest, J., Jr.; Hayden, M. R., Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 1999, 22 (4), 336-45. 8. Chung, S.; Gebre, A. K.; Seo, J.; Shelness, G. S.; Parks, J. S., A novel role for ABCA1-generated large pre-beta migrating nascent HDL in the regulation of hepatic VLDL triglyceride secretion. J Lipid Res 2010, 51 (4), 729-42. 9. Mathers, C. D.; Boerma, T.; Ma Fat, D., Global and regional causes of death. Br Med Bull 2009, 92, 7-32. 10. Yusuf, S.; Hawken, S.; Ounpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J.; Lisheng, L., Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004, 364 (9438), 937-52. 11. Chiang, C. E.; Huang, S. S.; Sung, S. H., Efficacy and safety of rosuvastatin in Taiwanese patients. J Chin Med Assoc 2008, 71 (3), 113-8. 12. Grundy, S. M.; Cleeman, J. I.; Merz, C. N.; Brewer, H. B., Jr.; Clark, L. T.; Hunninghake, D. B.; Pasternak, R. C.; Smith, S. C., Jr.; Stone, N. J., Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 2004, 110 (2), 227-39. 13. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285 (19), 2486-97. 14. Jacobs, D. R., Jr.; Mebane, I. L.; Bangdiwala, S. I.; Criqui, M. H.; Tyroler, H. A., High density lipoprotein cholesterol as a predictor of cardiovascular disease mortality in men and women: the follow-up study of the Lipid Research Clinics Prevalence Study. Am J Epidemiol 1990, 131 (1), 32-47. 15. Gordon, D. J.; Probstfield, J. L.; Garrison, R. J.; Neaton, J. D.; Castelli, W. P.; Knoke, J. D.; Jacobs, D. R., Jr.; Bangdiwala, S.; Tyroler, H. A., High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 1989, 79 (1), 8-15. 16. Genest, J. J.; McNamara, J. R.; Salem, D. N.; Schaefer, E. J., Prevalence of risk factors in men with premature coronary artery disease. Am J Cardiol 1991, 67 (15), 1185-9. 17. Harper, C. R.; Jacobson, T. A., New perspectives on the management of low levels of high-density lipoprotein cholesterol. Arch Intern Med 1999, 159 (10), 1049-57. 18. Tobert, J. A., Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat Rev Drug Discov 2003, 2 (7), 517-26. 19. Shitara, Y.; Sugiyama, Y., Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther. 2006, 112 (1), 71-105. Epub 2006 May 22. 20. Chatzizisis, Y. S.; Koskinas, K. C.; Misirli, G.; Vaklavas, C.; Hatzitolios, A.; Giannoglou, G. D., Risk factors and drug interactions predisposing to statin-induced myopathy: implications for risk assessment, prevention and treatment. Drug Saf 2010, 33 (3), 171-87. 21. Igel, M.; Sudhop, T.; von Bergmann, K., Pharmacology of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins), including rosuvastatin and pitavastatin. J Clin Pharmacol 2002, 42 (8), 835-45. 22. Evans, M.; Rees, A., Effects of HMG-CoA reductase inhibitors on skeletal muscle: are all statins the same? Drug Saf. 2002, 25 (9), 649-63. 23. Pasternak, R. C.; Smith, S. C., Jr.; Bairey-Merz, C. N.; Grundy, S. M.; Cleeman, J. I.; Lenfant, C., ACC/AHA/NHLBI Clinical Advisory on the Use and Safety of Statins. Circulation. 2002, 106 (8), 1024-8. 24. Armitage, J., The safety of statins in clinical practice. Lancet. 2007, 370 (9601), 1781-90. 25. Liao, J. K.; Laufs, U., Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 2005, 45, 89-118. 26. Laufs, U.; La Fata, V.; Plutzky, J.; Liao, J. K., Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 1998, 97 (12), 1129-35. 27. Kleemann, R.; Princen, H. M.; Emeis, J. J.; Jukema, J. W.; Fontijn, R. D.; Horrevoets, A. J.; Kooistra, T.; Havekes, L. M., Rosuvastatin reduces atherosclerosis development beyond and independent of its plasma cholesterol-lowering effect in APOE*3-Leiden transgenic mice: evidence for antiinflammatory effects of rosuvastatin. Circulation 2003, 108 (11), 1368-74. 28. Levy, Y., Beyond cholesterol lowering: effect of statins on markers of cardiovascular disease. Isr Med Assoc J. 2004, 6 (8), 490-1. 29. Wolfrum, S.; Jensen, K. S.; Liao, J. K., Endothelium-dependent effects of statins. Arterioscler Thromb Vasc Biol. 2003, 23 (5), 729-36. Epub 2003 Feb 27. 30. Kaski, J. C., Infection, endothelial dysfunction, and atherogenesis. Circulation. 2003, 108 (25), E171-2; author reply E171-2. 31. Schonbeck, U.; Libby, P., Inflammation, immunity, and HMG-CoA reductase inhibitors: statins as antiinflammatory agents? Circulation. 2004, 109 (21 Suppl 1), II18-26. 32. Gaw, A., HDL-C and triglyceride levels: relationship to coronary heart disease and treatment with statins. Cardiovasc Drugs Ther 2003, 17 (1), 53-62. 33. Baigent, C.; Keech, A.; Kearney, P. M.; Blackwell, L.; Buck, G.; Pollicino, C.; Kirby, A.; Sourjina, T.; Peto, R.; Collins, R.; Simes, R., Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 2005, 366 (9493), 1267-78. 34. Downs, J. R.; Clearfield, M.; Weis, S.; Whitney, E.; Shapiro, D. R.; Beere, P. A.; Langendorfer, A.; Stein, E. A.; Kruyer, W.; Gotto, A. M., Jr., Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 1998, 279 (20), 1615-22. 35. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994, 344 (8934), 1383-9. 36. Mancinelli, L.; Cronin, M.; Sadee, W., Pharmacogenomics: the promise of personalized medicine. AAPS PharmSci 2000, 2 (1), E4. 37. Frazer, K. A.; Murray, S. S.; Schork, N. J.; Topol, E. J., Human genetic variation and its contribution to complex traits. Nat Rev Genet. 2009, 10 (4), 241-51. 38. Peters, B. J.; Klungel, O. H.; de Boer, A.; Maitland-van der Zee, A. H., Genetic determinants of response to statins. Expert Rev Cardiovasc Ther 2009, 7 (8), 977-83. 39. Chasman, D. I.; Posada, D.; Subrahmanyan, L.; Cook, N. R.; Stanton, V. P., Jr.; Ridker, P. M., Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA 2004, 291 (23), 2821-7. 40. Medina, M. W.; Gao, F.; Ruan, W.; Rotter, J. I.; Krauss, R. M., Alternative splicing of 3-hydroxy-3-methylglutaryl coenzyme A reductase is associated with plasma low-density lipoprotein cholesterol response to simvastatin. Circulation 2008, 118 (4), 355-62. 41. Do, R.; Pare, G.; Montpetit, A.; Hudson, T. J.; Gaudet, D.; Engert, J. C., K45R variant of squalene synthase increases total cholesterol levels in two study samples from a French Canadian population. Hum Mutat 2008, 29 (5), 689-94. 42. Burnett, J. R., Drug evaluation: TAK-475--an oral inhibitor of squalene synthase for hyperlipidemia. Curr Opin Investig Drugs 2006, 7 (9), 850-6. 43. Hobbs, H. H.; Russell, D. W.; Brown, M. S.; Goldstein, J. L., The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein. Annu Rev Genet 1990, 24, 133-70. 44. Polisecki, E.; Muallem, H.; Maeda, N.; Peter, I.; Robertson, M.; McMahon, A. D.; Ford, I.; Packard, C.; Shepherd, J.; Jukema, J. W.; Westendorp, R. G.; de Craen, A. J.; Buckley, B. M.; Ordovas, J. M.; Schaefer, E. J., Genetic variation at the LDL receptor and HMG-CoA reductase gene loci, lipid levels, statin response, and cardiovascular disease incidence in PROSPER. Atherosclerosis 2008, 200 (1), 109-14. 45. Hannuksela, M. L.; Liinamaa, M. J.; Kesaniemi, Y. A.; Savolainen, M. J., Relation of polymorphisms in the cholesteryl ester transfer protein gene to transfer protein activity and plasma lipoprotein levels in alcohol drinkers. Atherosclerosis 1994, 110 (1), 35-44. 46. Kuivenhoven, J. A.; Jukema, J. W.; Zwinderman, A. H.; de Knijff, P.; McPherson, R.; Bruschke, A. V.; Lie, K. I.; Kastelein, J. J., The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis. The Regression Growth Evaluation Statin Study Group. N Engl J Med 1998, 338 (2), 86-93. 47. Regieli, J. J.; Jukema, J. W.; Grobbee, D. E.; Kastelein, J. J.; Kuivenhoven, J. A.; Zwinderman, A. H.; van der Graaf, Y.; Bots, M. L.; Doevendans, P. A., CETP genotype predicts increased mortality in statin-treated men with proven cardiovascular disease: an adverse pharmacogenetic interaction. Eur Heart J 2008, 29 (22), 2792-9. 48. Wang, A.; Yu, B. N.; Luo, C. H.; Tan, Z. R.; Zhou, G.; Wang, L. S.; Zhang, W.; Li, Z.; Liu, J.; Zhou, H. H., Ile118Val genetic polymorphism of CYP3A4 and its effects on lipid-lowering efficacy of simvastatin in Chinese hyperlipidemic patients. Eur J Clin Pharmacol 2005, 60 (12), 843-8. 49. Kim, K. A.; Park, P. W.; Lee, O. J.; Kang, D. K.; Park, J. Y., Effect of polymorphic CYP3A5 genotype on the single-dose simvastatin pharmacokinetics in healthy subjects. J Clin Pharmacol 2007, 47 (1), 87-93. 50. Kivisto, K. T.; Niemi, M.; Schaeffeler, E.; Pitkala, K.; Tilvis, R.; Fromm, M. F.; Schwab, M.; Eichelbaum, M.; Strandberg, T., Lipid-lowering response to statins is affected by CYP3A5 polymorphism. Pharmacogenetics 2004, 14 (8), 523-5. 51. Kim, R. B., 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) and genetic variability (single nucleotide polymorphisms) in a hepatic drug uptake transporter: what's it all about? Clin Pharmacol Ther 2004, 75 (5), 381-5. 52. Lau, Y. Y.; Okochi, H.; Huang, Y.; Benet, L. Z., Multiple transporters affect the disposition of atorvastatin and its two active hydroxy metabolites: application of in vitro and ex situ systems. J Pharmacol Exp Ther 2006, 316 (2), 762-71. 53. Chung, J. Y.; Cho, J. Y.; Yu, K. S.; Kim, J. R.; Oh, D. S.; Jung, H. R.; Lim, K. S.; Moon, K. H.; Shin, S. G.; Jang, I. J., Effect of OATP1B1 (SLCO1B1) variant alleles on the pharmacokinetics of pitavastatin in healthy volunteers. Clin Pharmacol Ther 2005, 78 (4), 342-50. 54. Kameyama, Y.; Yamashita, K.; Kobayashi, K.; Hosokawa, M.; Chiba, K., Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet Genomics 2005, 15 (7), 513-22. 55. Pasanen, M. K.; Fredrikson, H.; Neuvonen, P. J.; Niemi, M., Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 2007, 82 (6), 726-33. 56. Zhang, W.; Chen, B. L.; Ozdemir, V.; He, Y. J.; Zhou, G.; Peng, D. D.; Deng, S.; Xie, Q. Y.; Xie, W.; Xu, L. Y.; Wang, L. C.; Fan, L.; Wang, A.; Zhou, H. H., SLCO1B1 521T-->C functional genetic polymorphism and lipid-lowering efficacy of multiple-dose pravastatin in Chinese coronary heart disease patients. Br J Clin Pharmacol 2007, 64 (3), 346-52. 57. Neuvonen, P. J.; Niemi, M.; Backman, J. T., Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther 2006, 80 (6), 565-81. 58. Genvigir, F. D.; Soares, S. A.; Hirata, M. H.; Willrich, M. A.; Arazi, S. S.; Rebecchi, I. M.; Oliveira, R.; Bernik, M. M.; Dorea, E. L.; Bertolami, M. C.; Hirata, R. D., Effects of ABCA1 SNPs, including the C-105T novel variant, on serum lipids of Brazilian individuals. Clin Chim Acta 2008, 389 (1-2), 79-86. 59. Voora, D.; Shah, S. H.; Reed, C. R.; Zhai, J.; Crosslin, D. R.; Messer, C.; Salisbury, B. A.; Ginsburg, G. S., Pharmacogenetic predictors of statin-mediated low-density lipoprotein cholesterol reduction and dose response. Circ Cardiovasc Genet 2008, 1 (2), 100-6. 60. Martin, P. D.; Mitchell, P. D.; Schneck, D. W., Pharmacodynamic effects and pharmacokinetics of a new HMG-CoA reductase inhibitor, rosuvastatin, after morning or evening administration in healthy volunteers. Br J Clin Pharmacol 2002, 54 (5), 472-7. 61. Lee, E.; Ryan, S.; Birmingham, B.; Zalikowski, J.; March, R.; Ambrose, H.; Moore, R.; Lee, C.; Chen, Y.; Schneck, D., Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment. Clin Pharmacol Ther 2005, 78 (4), 330-41. 62. Pullinger, C. R.; Hakamata, H.; Duchateau, P. N.; Eng, C.; Aouizerat, B. E.; Cho, M. H.; Fielding, C. J.; Kane, J. P., Analysis of hABC1 gene 5' end: additional peptide sequence, promoter region, and four polymorphisms. Biochem Biophys Res Commun 2000, 271 (2), 451-5. 63. Lai, C. Q.; Demissie, S.; Cupples, L. A.; Zhu, Y.; Adiconis, X.; Parnell, L. D.; Corella, D.; Ordovas, J. M., Influence of the APOA5 locus on plasma triglyceride, lipoprotein subclasses, and CVD risk in the Framingham Heart Study. J Lipid Res 2004, 45 (11), 2096-105. 64. Talmud, P. J.; Palmen, J.; Putt, W.; Lins, L.; Humphries, S. E., Determination of the functionality of common APOA5 polymorphisms. J Biol Chem 2005, 280 (31), 28215-20. 65. Aouizerat, B. E.; Kulkarni, M.; Heilbron, D.; Drown, D.; Raskin, S.; Pullinger, C. R.; Malloy, M. J.; Kane, J. P., Genetic analysis of a polymorphism in the human apoA-V gene: effect on plasma lipids. J Lipid Res 2003, 44 (6), 1167-73. 66. Nabika, T.; Nasreen, S.; Kobayashi, S.; Masuda, J., The genetic effect of the apoprotein AV gene on the serum triglyceride level in Japanese. Atherosclerosis 2002, 165 (2), 201-4. 67. Pennacchio, L. A.; Olivier, M.; Hubacek, J. A.; Cohen, J. C.; Cox, D. R.; Fruchart, J. C.; Krauss, R. M.; Rubin, E. M., An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 2001, 294 (5540), 169-73. 68. Schaap, F. G.; Rensen, P. C.; Voshol, P. J.; Vrins, C.; van der Vliet, H. N.; Chamuleau, R. A.; Havekes, L. M.; Groen, A. K.; van Dijk, K. W., ApoAV reduces plasma triglycerides by inhibiting very low density lipoprotein-triglyceride (VLDL-TG) production and stimulating lipoprotein lipase-mediated VLDL-TG hydrolysis. J Biol Chem 2004, 279 (27), 27941-7. 69. Lai, C. Q.; Tai, E. S.; Tan, C. E.; Cutter, J.; Chew, S. K.; Zhu, Y. P.; Adiconis, X.; Ordovas, J. M., The APOA5 locus is a strong determinant of plasma triglyceride concentrations across ethnic groups in Singapore. J Lipid Res 2003, 44 (12), 2365-73. 70. Pennacchio, L. A.; Olivier, M.; Hubacek, J. A.; Krauss, R. M.; Rubin, E. M.; Cohen, J. C., Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels. Hum Mol Genet 2002, 11 (24), 3031-8. 71. Charriere, S.; Bernard, S.; Aqallal, M.; Merlin, M.; Billon, S.; Perrot, L.; Le Coquil, E.; Sassolas, A.; Moulin, P.; Marcais, C., Association of APOA5 -1131T>C and S19W gene polymorphisms with both mild hypertriglyceridemia and hyperchylomicronemia in type 2 diabetic patients. Clin Chim Acta 2008, 394 (1-2), 99-103. 72. Laurila, P. P.; Naukkarinen, J.; Kristiansson, K.; Ripatti, S.; Kauttu, T.; Silander, K.; Salomaa, V.; Perola, M.; Karhunen, P. J.; Barter, P. J.; Ehnholm, C.; Peltonen, L., Genetic association and interaction analysis of USF1 and APOA5 on lipid levels and atherosclerosis. Arterioscler Thromb Vasc Biol 2010, 30 (2), 346-52. 73. Ken-Dror, G.; Goldbourt, U.; Dankner, R., Different effects of apolipoprotein A5 SNPs and haplotypes on triglyceride concentration in three ethnic origins. J Hum Genet 2010, 55 (5), 300-7. 74. Nilsson, S. K.; Christensen, S.; Raarup, M. K.; Ryan, R. O.; Nielsen, M. S.; Olivecrona, G., Endocytosis of apolipoprotein A-V by members of the low density lipoprotein receptor and the VPS10p domain receptor families. J Biol Chem 2008, 283 (38), 25920-7. 75. Ridker, P. M.; Pare, G.; Parker, A. N.; Zee, R. Y.; Miletich, J. P.; Chasman, D. I., Polymorphism in the CETP gene region, HDL cholesterol, and risk of future myocardial infarction: Genomewide analysis among 18 245 initially healthy women from the Women's Genome Health Study. Circ Cardiovasc Genet 2009, 2 (1), 26-33. 76. Thompson, A.; Di Angelantonio, E.; Sarwar, N.; Erqou, S.; Saleheen, D.; Dullaart, R. P.; Keavney, B.; Ye, Z.; Danesh, J., Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA 2008, 299 (23), 2777-88. 77. Corsetti, J. P.; Ryan, D.; Rainwater, D. L.; Moss, A. J.; Zareba, W.; Sparks, C. E., Cholesteryl Ester Transfer Protein Polymorphism (TaqIB) Associates With Risk in Postinfarction Patients With High C-Reactive Protein and High-Density Lipoprotein Cholesterol Levels. Arterioscler Thromb Vasc Biol 2010. 78. Dullaart, R. P.; Sluiter, W. J., Common variation in the CETP gene and the implications for cardiovascular disease and its treatment: an updated analysis. Pharmacogenomics 2008, 9 (6), 747-63. 79. Gradhand, U.; Kim, R. B., Pharmacogenomics of MRP transporters (ABCC1-5) and BCRP (ABCG2). Drug Metab Rev 2008, 40 (2), 317-54. 80. Kondo, C.; Suzuki, H.; Itoda, M.; Ozawa, S.; Sawada, J.; Kobayashi, D.; Ieiri, I.; Mine, K.; Ohtsubo, K.; Sugiyama, Y., Functional analysis of SNPs variants of BCRP/ABCG2. Pharm Res 2004, 21 (10), 1895-903. 81. Keskitalo, J. E.; Zolk, O.; Fromm, M. F.; Kurkinen, K. J.; Neuvonen, P. J.; Niemi, M., ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 2009, 86 (2), 197-203. 82. Bressler, J.; Folsom, A. R.; Couper, D. J.; Volcik, K. A.; Boerwinkle, E., Genetic variants identified in a European genome-wide association study that were found to predict incident coronary heart disease in the atherosclerosis risk in communities study. Am J Epidemiol 2010, 171 (1), 14-23. 83. Abi-Younes, S.; Sauty, A.; Mach, F.; Sukhova, G. K.; Libby, P.; Luster, A. D., The stromal cell-derived factor-1 chemokine is a potent platelet agonist highly expressed in atherosclerotic plaques. Circ Res 2000, 86 (2), 131-8. 84. Braissant, O.; Foufelle, F.; Scotto, C.; Dauca, M.; Wahli, W., Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology. 1996, 137 (1), 354-66. 85. Inoue, I.; Shino, K.; Noji, S.; Awata, T.; Katayama, S., Expression of peroxisome proliferator-activated receptor alpha (PPAR alpha) in primary cultures of human vascular endothelial cells. Biochem Biophys Res Commun. 1998, 246 (2), 370-4. 86. Staels, B.; Koenig, W.; Habib, A.; Merval, R.; Lebret, M.; Torra, I. P.; Delerive, P.; Fadel, A.; Chinetti, G.; Fruchart, J. C.; Najib, J.; Maclouf, J.; Tedgui, A., Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators. Nature. 1998, 393 (6687), 790-3. 87. Yamakawa-Kobayashi, K.; Ishiguro, H.; Arinami, T.; Miyazaki, R.; Hamaguchi, H., A Val227Ala polymorphism in the peroxisome proliferator activated receptor alpha (PPARalpha) gene is associated with variations in serum lipid levels. J Med Genet. 2002, 39 (3), 189-91. 88. Marx, N.; Duez, H.; Fruchart, J. C.; Staels, B., Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells. Circ Res. 2004, 94 (9), 1168-78. 89. Frikke-Schmidt, R.; Nordestgaard, B. G.; Jensen, G. B.; Steffensen, R.; Tybjaerg-Hansen, A., Genetic variation in ABCA1 predicts ischemic heart disease in the general population. Arterioscler Thromb Vasc Biol 2008, 28 (1), 180-6. 90. Oram, J. F., Tangier disease and ABCA1. Biochim Biophys Acta 2000, 1529 (1-3), 321-30. 91. Lutucuta, S.; Ballantyne, C. M.; Elghannam, H.; Gotto, A. M., Jr.; Marian, A. J., Novel polymorphisms in promoter region of atp binding cassette transporter gene and plasma lipids, severity, progression, and regression of coronary atherosclerosis and response to therapy. Circ Res 2001, 88 (9), 969-73. 92. Ordovas, J. M.; Mooser, V., The APOE locus and the pharmacogenetics of lipid response. Curr Opin Lipidol 2002, 13 (2), 113-7. 93. Miltiadous, G.; Saougos, V.; Cariolou, M.; Elisaf, M. S., Plasma lipoprotein(a) levels and LDL-cholesterol lowering response to statin therapy in patients with heterozygous familial hypercholesterolemia. Ann Clin Lab Sci 2006, 36 (3), 353-5. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45915 | - |
dc.description.abstract | 高血脂病人血中膽固醇及三酸甘油脂 (triglyceride,TG) 過高,易造成動脈硬化、血栓及中風。目前臨床上最廣為使用的降血脂藥─史達汀 (statin) 類藥物,其能抑制HMG-CoA還原酶 (3-hydroxy-3-methylglutaryl-coenzyme A reductase),進而減少內生性膽固醇合成與增加細胞膜上的低密度膽固醇受體,導致血中總膽固醇 (total cholesterol,TC)、低密度膽固醇 (low-density lipoprotein cholesterol,LDL-c)及三酸甘油脂濃度減少,並使高密度膽固醇 (high-density lipoprotein cholesterol,HDL-c) 濃度增加。但史達汀治療效果仍存在廣大的變異性,而基因多型性可能可解釋部分原因。
本研究共納入209位高血脂病人,使用atorvastatin (ATV) 或 rosuvastatin (RSV) 四週以上,且有治療前後血脂檢驗值供分析,再收集受試者的DNA進行基因型檢定,篩選與血脂生成、運送或代謝有關的基因,例如ABCA1、ABCG5/G8、APOA5、CETP、FDFT1、LDLR等;與史達汀代謝運送有關的基因,如ABCB1、ABCG2、CYP2C9/19、CYP3A5、SLCO1B1等,共24個SNPs,並分析基因多型性對於基礎生化值或ATV及RSV治療效果是否有相關性。另一方面,欲研究目前最強的史達汀類藥物 ─ RSV的降脂效果與安全性,擴大篩選ABCA1、APOA1、APOA5、CETP、LIPC、LPL、PPARA/D/G等48個SNPs,再進一步探討SNPs或單套型與受試者在RSV治療後TC、TG、LDL-c、HDL-c改變百分比、TG/HDL和TC/HDL比值改變量之間的相關性。 在基礎生化值方面,本研究發現7個相關的SNPs,分別為ABCG2 (rs2231142)、APOA5 (rs3135506)、CETP (rs708272、rs17245715、rs12597250)、LDLR (rs5929)、MIA3 (rs17465637);在與史達汀降血脂效果相關的SNPs方面,本研究找到2個SNPs與ATV降脂效果有相關性,分別是LDLR (rs5925) 與LDLR (rs4508523)。在RSV方面,有4個SNPs與降血脂效果有顯著影響,分別是ABCG2 (rs2231142)、misc (rs501120)、PPARA (rs1800234)、PPARG (rs4684847)。在單套型分析中,本研究發現ABCA1之單套型,受試者若為較不常見的單套型 C-T-G-G-G-A (頻率:7.899%),其基礎生化值中的總膽固醇與LDL-c濃度比較為常見的兩個單套型 C-T-G-G-G-G (頻率:13.177%)、T-T-G-G-G-A (頻率:12.033%) 高。在給予RSV治療後,TG濃度改變百分比在最不常見的單套型C-T-G-G-G-A中不降反而些微上升 (C-T-G-G-G-G:T-T-G-G-G-A:C-T-G-G-G-A,-23.904±24.623%:-20.192±24.596%:0.4781±37.064%,p value= 0.019),且在TG/HDL比值改變量中下降最少 (C-T-G-G-G-G:T-T-G-G-G-A:C-T-G-G-G-A,-1.015±1.7793:-0.8910±1.3887:-0.2638±1.4789,p value= 0.016)。 本研究發現某些基因型與受試者的基礎生化值相關,顯示先天遺傳在血脂濃度方面有其重要性,且基因多型性可能影響ATV與RSV的降脂效果,故本研究可提供高血脂病人在心血管疾病危險性之預防與治療上作為參考。結果是否可於更大的台灣人族群中得到驗證,需未來更多進一步之研究。 | zh_TW |
dc.description.abstract | Elevated blood cholesterol and triglycerides (TGs) are so-called hyperlipidemia and implicated in the development of atherosclerosis with risks for thrombosis, heart attack and stroke. Currently statins become the most widely used lipid-lowering drugs. Statins inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, a rate-limiting enzyme of cholesterol biosynthesis pathway, resulting in the reduction of endogenous cholesterol synthesis and the increase of low-density lipoprotein (LDL) receptors on cell membrane. It accelerates uptake of LDL from blood circulation, reduces the concentrations of LDL-choleterol (LDL-c), total cholesterol (TC) and TG in plasma and upregulates plasma high-density lipoprotein cholesterol (HDL-c). The effect of statins on anti-hyperlipidemia varies among individuals. Recently genetic polymorphisms are concerned as an important contribution to the differential effects.
The DNAs of 209 hyperlipidemic individuals treated with atorvastatin (ATV) or rosuvastatin (RSV) 10 mg/day were analyzed for twenty-four single nucleotide polymorphisms (SNPs) within genes related to lipid synthesis, transport and metabolism, such as ABCA1, ABCG5/8, APOA5, CETP, FDFT1, LDLR, and genes related to statin disposition, including ABCB1, ABCG2, CYP2C9/2C19, CYP3A5, SLCO1B1. The polymorphisms were examined for the association with baseline lipid profiles and the lipid-lowering effects of ATV and RSV. To extensively study gene polymorphisms and the efficacy of statins, additional forty-eight SNPs were screened within genes of ABCA1, APOA1, APOA5, CETP, LPL, LIPC and PPARA/D/G in patients treated with RSV. Genetic variations, SNPs and haplotypes were further analyzed in terms of the levels of TC, TG, LDL-c, HDL-c and the ratio of TG/HDL and TC/HDL upon RSV therapy. SNPs ABCG2 (rs2231142), APOA5 (rs3135506), CETP (rs708272, rs17245715, rs12597250), LDLR (rs5929), MIA3 (rs17465637) were associated with baseline lipid profiles. There were 2 SNPs, LDLR (rs5925) and LDLR (rs4508523), associated with ATV treatment. On the other side, SNPs ABCG2 (rs2231142), misc (rs501120), PPARA (rs1800234) and PPARG (rs4684847) were significantly associated with the RSV treatment. In haplotype analysis, higher baseline TC and LDL-c were shown in the individuals with least common haplotype C-T-G-G-G-A (frequency: 7.899%) of ABCA1, compared to those with more common haplotypes C-T-G-G-G-G (frequency: 13.177%) and T-T-G-G-G-A (frequency: 12.033%). After RSV therapy, individuals with C-T-G-G-G-A haplotype showed the least elevation of TG concentration (C-T-G-G-G-G:T-T-G-G-G-A:C-T-G-G-G-A,-23.904±24.623%:-20.192±24.596%:0.4781±37.064%,p value= 0.019) and reduction of TG/HDL ratio (C-T-G-G-G-G:T-T-G-G-G-A:C-T-G-G-G-A,-1.015±1.7793:-0.8910±1.3887:-0.2638±1.4789,p value= 0.016) among three haplotypes. This study showed that genetic polymorphisms may play a role in baseline lipid profiles and the lipid-lowering effect of ATV and RSV. Further studies are needed for validation of the results of this study in a larger Taiwanese population. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:48:46Z (GMT). No. of bitstreams: 1 ntu-99-R97423012-1.pdf: 1120795 bytes, checksum: c3665162d5706a2f01f9d8952bca8688 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 中文摘要 i
Abstract iii 目錄 v 表目錄 vii 圖目錄 viii 縮寫對照表 ix 第一章、緒論 1 1.1人體脂質與脂蛋白概述 1 1.2冠心病、高血脂症之危險因子概述 2 1.3史達汀的作用機制與使用概述 3 1.4 基因多型性 5 1.5 史達汀的藥物基因體學 6 1.6 研究目的 12 第二章、材料與研究方法 13 2.1 實驗儀器 13 2.2 實驗材料 13 2.3 培養液、培養基與緩衝液之配製 14 2.4 細菌株、細胞株與細菌質體 15 2. 5 實驗方法 16 一、ABCA1 啟動子 (單核苷酸多型性:-477 T/C) 質體的構築 16 二、分析ABCA1啟動子活性 22 2.6 臨床研究 24 2.6.1 研究族群 24 2.6.2研究設計 24 2.6.3 血液檢體處理 25 2.6.4 單核苷酸多型性 (SNP) 基因型鑑定 26 2. 7 統計分析 27 第三章、研究結果 28 3.1 研究族群的基本特徵 28 3.2 ATV與RSV的降脂效果 28 3.3 基因多型性 29 3.4 與治療前基礎生化值有相關性之基因多型性 29 3.5 與史達汀降血脂效果相關的SNPs 31 3.6 單套型研究 33 3. 7 ABCA1啟動子 (單核苷酸多型性:-477 T/C) 活性分析 33 第四章、討論 34 第五章、研究限制 41 第六章、結論 42 第七章、參考文獻 67 | |
dc.language.iso | zh-TW | |
dc.title | 高血脂病人其基因多型性與基礎生化值及史達汀效果之影響 | zh_TW |
dc.title | Associations of Genetic Polymorphisms with Baseline Profiles and Lipid-Lowering Effects of Statin Therapy | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王宗道(Tzung-Dau Wang),程蘊菁(Yen-Ching Chen) | |
dc.subject.keyword | 史達汀,單核苷,酸多型性,基因多型性,單套型,膽固醇,高血脂, | zh_TW |
dc.subject.keyword | atorvastatin,rosuvastatin,single nucleotide polymorphism (SNP),genetic polymorphism,haplotype,cholesterol, | en |
dc.relation.page | 79 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-03 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 1.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。