Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45912
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張?仁
dc.contributor.authorTzi-Yang Linen
dc.contributor.author林子揚zh_TW
dc.date.accessioned2021-06-15T04:48:42Z-
dc.date.available2013-08-13
dc.date.copyright2010-08-13
dc.date.issued2010
dc.date.submitted2010-08-04
dc.identifier.citationBakheet, T., Frevel, M., Williams, B.R., Greer, W., and Khabar, K.S. (2001). ARED: human AU-rich element-containing mRNA database reveals an unexpectedly diverse functional repertoire of encoded proteins. Nucleic Acids Res 29, 246-254.
Bakheet, T., Williams, B.R., and Khabar, K.S. (2003). ARED 2.0: an update of AU-rich element mRNA database. Nucleic Acids Res 31, 421-423.
Baou, M., Jewell, A., and Murphy, J.J. (2009). TIS11 family proteins and their roles in posttranscriptional gene regulation. J Biomed Biotechnol 2009, 634520.
Barreau, C., Paillard, L., and Osborne, H.B. (2005). AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 33, 7138-7150.
Bell, S.E., Sanchez, M.J., Spasic-Boskovic, O., Santalucia, T., Gambardella, L., Burton, G.J., Murphy, J.J., Norton, J.D., Clark, A.R., and Turner, M. (2006). The RNA binding protein Zfp36l1 is required for normal vascularisation and post-transcriptionally regulates VEGF expression. Dev Dyn 235, 3144-3155.
Benjamin, D., Schmidlin, M., Min, L., Gross, B., and Moroni, C. (2006). BRF1 protein turnover and mRNA decay activity are regulated by protein kinase B at the same phosphorylation sites. Mol Cell Biol 26, 9497-9507.
Bernlohr, D.A., Bolanowski, M.A., Kelly, T.J., Jr., and Lane, M.D. (1985). Evidence for an increase in transcription of specific mRNAs during differentiation of 3T3-L1 preadipocytes. J Biol Chem 260, 5563-5567.
Blackshear, P.J., Phillips, R.S., Ghosh, S., Ramos, S.B., Richfield, E.K., and Lai, W.S. (2005). Zfp36l3, a rodent X chromosome gene encoding a placenta-specific member of the Tristetraprolin family of CCCH tandem zinc finger proteins. Biol Reprod 73, 297-307.
Bost, F., Aouadi, M., Caron, L., and Binetruy, B. (2005). The role of MAPKs in adipocyte differentiation and obesity. Biochimie 87, 51-56.
Brengues, M., Teixeira, D., and Parker, R. (2005). Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310, 486-489.
Brewer, G. (1991). An A + U-rich element RNA-binding factor regulates c-myc mRNA stability in vitro. Mol Cell Biol 11, 2460-2466.
Brook, M., Tchen, C.R., Santalucia, T., McIlrath, J., Arthur, J.S., Saklatvala, J., and Clark, A.R. (2006). Posttranslational regulation of tristetraprolin subcellular localization and protein stability by p38 mitogen-activated protein kinase and extracellular signal-regulated kinase pathways. Mol Cell Biol 26, 2408-2418.
Burton, G.R., Nagarajan, R., Peterson, C.A., and McGehee, R.E., Jr. (2004). Microarray analysis of differentiation-specific gene expression during 3T3-L1 adipogenesis. Gene 329, 167-185.
Busse, M., Schwarzburger, M., Berger, F., Hacker, C., and Munz, B. (2008). Strong induction of the Tis11B gene in myogenic differentiation. Eur J Cell Biol 87, 31-38.
Bustin, S.A., and McKay, I.A. (1999). The product of the primary response gene BRF1 inhibits the interaction between 14-3-3 proteins and cRaf-1 in the yeast trihybrid system. DNA Cell Biol 18, 653-661.
Cao, H., Deterding, L.J., Venable, J.D., Kennington, E.A., Yates, J.R., 3rd, Tomer, K.B., and Blackshear, P.J. (2006). Identification of the anti-inflammatory protein tristetraprolin as a hyperphosphorylated protein by mass spectrometry and site-directed mutagenesis. Biochem J 394, 285-297.
Cao, H., and Lin, R. (2008). Phosphorylation of recombinant tristetraprolin in vitro. Protein J 27, 163-169.
Cao, H., Tuttle, J.S., and Blackshear, P.J. (2004). Immunological characterization of tristetraprolin as a low abundance, inducible, stable cytosolic protein. J Biol Chem 279, 21489-21499.
Cao, H., Urban, J.F., Jr., and Anderson, R.A. (2008). Insulin increases tristetraprolin and decreases VEGF gene expression in mouse 3T3-L1 adipocytes. Obesity (Silver Spring) 16, 1208-1218.
Cao, Z., Umek, R.M., and McKnight, S.L. (1991). Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev 5, 1538-1552.
Carballo, E., Cao, H., Lai, W.S., Kennington, E.A., Campbell, D., and Blackshear, P.J. (2001). Decreased sensitivity of tristetraprolin-deficient cells to p38 inhibitors suggests the involvement of tristetraprolin in the p38 signaling pathway. J Biol Chem 276, 42580-42587.
Carballo, E., Gilkeson, G.S., and Blackshear, P.J. (1997). Bone marrow transplantation reproduces the tristetraprolin-deficiency syndrome in recombination activating gene-2 (-/-) mice. Evidence that monocyte/macrophage progenitors may be responsible for TNFalpha overproduction. J Clin Invest 100, 986-995.
Carballo, E., Lai, W.S., and Blackshear, P.J. (1998). Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281, 1001-1005.
Carballo, E., Lai, W.S., and Blackshear, P.J. (2000). Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 95, 1891-1899.
Carrick, D.M., Lai, W.S., and Blackshear, P.J. (2004). The tandem CCCH zinc finger protein tristetraprolin and its relevance to cytokine mRNA turnover and arthritis. Arthritis Res Ther 6, 248-264.
Chen, C.Y., Del Gatto-Konczak, F., Wu, Z., and Karin, M. (1998). Stabilization of interleukin-2 mRNA by the c-Jun NH2-terminal kinase pathway. Science 280, 1945-1949.
Chen, C.Y., Gherzi, R., Ong, S.E., Chan, E.L., Raijmakers, R., Pruijn, G.J., Stoecklin, G., Moroni, C., Mann, M., and Karin, M. (2001). AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107, 451-464.
Chen, C.Y., and Shyu, A.B. (1995). AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20, 465-470.
Chen, Z., Torrens, J.I., Anand, A., Spiegelman, B.M., and Friedman, J.M. (2005). Krox20 stimulates adipogenesis via C/EBPbeta-dependent and -independent mechanisms. Cell Metab 1, 93-106.
Chrestensen, C.A., Schroeder, M.J., Shabanowitz, J., Hunt, D.F., Pelo, J.W., Worthington, M.T., and Sturgill, T.W. (2004). MAPKAP kinase 2 phosphorylates tristetraprolin on in vivo sites including Ser178, a site required for 14-3-3 binding. J Biol Chem 279, 10176-10184.
Christy, R.J., Kaestner, K.H., Geiman, D.E., and Lane, M.D. (1991). CCAAT/enhancer binding protein gene promoter: binding of nuclear factors during differentiation of 3T3-L1 preadipocytes. Proc Natl Acad Sci U S A 88, 2593-2597.
Ciais, D., Cherradi, N., Bailly, S., Grenier, E., Berra, E., Pouyssegur, J., Lamarre, J., and Feige, J.J. (2004). Destabilization of vascular endothelial growth factor mRNA by the zinc-finger protein TIS11b. Oncogene 23, 8673-8680.
Clarke, S.L., Robinson, C.E., and Gimble, J.M. (1997). CAAT/enhancer binding proteins directly modulate transcription from the peroxisome proliferator-activated receptor gamma 2 promoter. Biochem Biophys Res Commun 240, 99-103.
Cougot, N., Babajko, S., and Seraphin, B. (2004). Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol 165, 31-40.
Couttet, P., Fromont-Racine, M., Steel, D., Pictet, R., and Grange, T. (1997). Messenger RNA deadenylylation precedes decapping in mammalian cells. Proc Natl Acad Sci U S A 94, 5628-5633.
Cowherd, R.M., Lyle, R.E., and McGehee, R.E., Jr. (1999). Molecular regulation of adipocyte differentiation. Semin Cell Dev Biol 10, 3-10.
De, J., Lai, W.S., Thorn, J.M., Goldsworthy, S.M., Liu, X., Blackwell, T.K., and Blackshear, P.J. (1999). Identification of four CCCH zinc finger proteins in Xenopus, including a novel vertebrate protein with four zinc fingers and severely restricted expression. Gene 228, 133-145.
Duan, H., Cherradi, N., Feige, J.J., and Jefcoate, C. (2009). cAMP-dependent posttranscriptional regulation of steroidogenic acute regulatory (STAR) protein by the zinc finger protein ZFP36L1/TIS11b. Mol Endocrinol 23, 497-509.
DuBois, R.N., McLane, M.W., Ryder, K., Lau, L.F., and Nathans, D. (1990). A growth factor-inducible nuclear protein with a novel cysteine/histidine repetitive sequence. J Biol Chem 265, 19185-19191.
Dudziak, K., Mottalebi, N., Senkel, S., Edghill, E.L., Rosengarten, S., Roose, M., Bingham, C., Ellard, S., and Ryffel, G.U. (2008). Transcription factor HNF1beta and novel partners affect nephrogenesis. Kidney Int 74, 210-217.
El-Chaar, D., Gagnon, A., and Sorisky, A. (2004). Inhibition of insulin signaling and adipogenesis by rapamycin: effect on phosphorylation of p70 S6 kinase vs eIF4E-BP1. Int J Obes Relat Metab Disord 28, 191-198.
El-Jack, A.K., Hamm, J.K., Pilch, P.F., and Farmer, S.R. (1999). Reconstitution of insulin-sensitive glucose transport in fibroblasts requires expression of both PPARgamma and C/EBPalpha. J Biol Chem 274, 7946-7951.
Elberg, G., Gimble, J.M., and Tsai, S.Y. (2000). Modulation of the murine peroxisome proliferator-activated receptor gamma 2 promoter activity by CCAAT/enhancer-binding proteins. J Biol Chem 275, 27815-27822.
Farmer, S.R. (2006). Transcriptional control of adipocyte formation. Cell Metab 4, 263-273.
Fenger-Gron, M., Fillman, C., Norrild, B., and Lykke-Andersen, J. (2005). Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell 20, 905-915.
Flier, J.S. (2004). Obesity wars: molecular progress confronts an expanding epidemic. Cell 116, 337-350.
Franks, T.M., and Lykke-Andersen, J. (2007). TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements. Genes Dev 21, 719-735.
Frederick, E.D., Ramos, S.B., and Blackshear, P.J. (2008). A unique C-terminal repeat domain maintains the cytosolic localization of the placenta-specific tristetraprolin family member ZFP36L3. J Biol Chem 283, 14792-14800.
Friedman, S.L., Yamasaki, G., and Wong, L. (1994). Modulation of transforming growth factor beta receptors of rat lipocytes during the hepatic wound healing response. Enhanced binding and reduced gene expression accompany cellular activation in culture and in vivo. J Biol Chem 269, 10551-10558.
Geloen, A., Collet, A.J., Guay, G., and Bukowiecki, L.J. (1989). Insulin stimulates in vivo cell proliferation in white adipose tissue. Am J Physiol 256, C190-196.
Gomperts, M., Pascall, J.C., and Brown, K.D. (1990). The nucleotide sequence of a cDNA encoding an EGF-inducible gene indicates the existence of a new family of mitogen-induced genes. Oncogene 5, 1081-1083.
Good, P.J. (1995). A conserved family of elav-like genes in vertebrates. Proc Natl Acad Sci U S A 92, 4557-4561.
Green, H., and Kehinde, O. (1975). An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell 5, 19-27.
Gueydan, C., Droogmans, L., Chalon, P., Huez, G., Caput, D., and Kruys, V. (1999). Identification of TIAR as a protein binding to the translational regulatory AU-rich element of tumor necrosis factor alpha mRNA. J Biol Chem 274, 2322-2326.
Haagenson, K.K., and Wu, G.S. (2010). The role of MAP kinases and MAP kinase phosphatase-1 in resistance to breast cancer treatment. Cancer Metastasis Rev 29, 143-149.
Hacker, C., Valchanova, R., Adams, S., and Munz, B. (2010). ZFP36L1 is regulated by growth factors and cytokines in keratinocytes and influences their VEGF production. Growth Factors.
Hamilton, B.J., Nagy, E., Malter, J.S., Arrick, B.A., and Rigby, W.F. (1993). Association of heterogeneous nuclear ribonucleoprotein A1 and C proteins with reiterated AUUUA sequences. J Biol Chem 268, 8881-8887.
Henics, T., Nagy, E., Oh, H.J., Csermely, P., von Gabain, A., and Subjeck, J.R. (1999). Mammalian Hsp70 and Hsp110 proteins bind to RNA motifs involved in mRNA stability. J Biol Chem 274, 17318-17324.
Hsu, C.L., and Stevens, A. (1993). Yeast cells lacking 5'-->3' exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5' cap structure. Mol Cell Biol 13, 4826-4835.
Ingelfinger, D., Arndt-Jovin, D.J., Luhrmann, R., and Achsel, T. (2002). The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci. RNA 8, 1489-1501.
Johnson, B.A., Stehn, J.R., Yaffe, M.B., and Blackwell, T.K. (2002). Cytoplasmic localization of tristetraprolin involves 14-3-3-dependent and -independent mechanisms. J Biol Chem 277, 18029-18036.
Keffer, J., Probert, L., Cazlaris, H., Georgopoulos, S., Kaslaris, E., Kioussis, D., and Kollias, G. (1991). Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J 10, 4025-4031.
Kim, J.B., Sarraf, P., Wright, M., Yao, K.M., Mueller, E., Solanes, G., Lowell, B.B., and Spiegelman, B.M. (1998). Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J Clin Invest 101, 1-9.
King, P.H., Levine, T.D., Fremeau, R.T., Jr., and Keene, J.D. (1994). Mammalian homologs of Drosophila ELAV localized to a neuronal subset can bind in vitro to the 3' UTR of mRNA encoding the Id transcriptional repressor. J Neurosci 14, 1943-1952.
Klausner, R.D., Rouault, T.A., and Harford, J.B. (1993). Regulating the fate of mRNA: the control of cellular iron metabolism. Cell 72, 19-28.
Kotlyarov, A., Neininger, A., Schubert, C., Eckert, R., Birchmeier, C., Volk, H.D., and Gaestel, M. (1999). MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis. Nat Cell Biol 1, 94-97.
Kuwano, Y., Kim, H.H., Abdelmohsen, K., Pullmann, R., Jr., Martindale, J.L., Yang, X., and Gorospe, M. (2008). MKP-1 mRNA stabilization and translational control by RNA-binding proteins HuR and NF90. Mol Cell Biol 28, 4562-4575.
Kuwano, Y., Pullmann, R., Jr., Marasa, B.S., Abdelmohsen, K., Lee, E.K., Yang, X., Martindale, J.L., Zhan, M., and Gorospe, M. (2010). NF90 selectively represses the translation of target mRNAs bearing an AU-rich signature motif. Nucleic Acids Res 38, 225-238.
Lagnado, C.A., Brown, C.Y., and Goodall, G.J. (1994). AUUUA is not sufficient to promote poly(A) shortening and degradation of an mRNA: the functional sequence within AU-rich elements may be UUAUUUA(U/A)(U/A). Mol Cell Biol 14, 7984-7995.
Lai, W.S., Carballo, E., Strum, J.R., Kennington, E.A., Phillips, R.S., and Blackshear, P.J. (1999). Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol Cell Biol 19, 4311-4323.
Lai, W.S., Carballo, E., Thorn, J.M., Kennington, E.A., and Blackshear, P.J. (2000). Interactions of CCCH zinc finger proteins with mRNA. Binding of tristetraprolin-related zinc finger proteins to Au-rich elements and destabilization of mRNA. J Biol Chem 275, 17827-17837.
Lai, W.S., Kennington, E.A., and Blackshear, P.J. (2002). Interactions of CCCH zinc finger proteins with mRNA: non-binding tristetraprolin mutants exert an inhibitory effect on degradation of AU-rich element-containing mRNAs. J Biol Chem 277, 9606-9613.
Lai, W.S., Kennington, E.A., and Blackshear, P.J. (2003). Tristetraprolin and its family members can promote the cell-free deadenylation of AU-rich element-containing mRNAs by poly(A) ribonuclease. Mol Cell Biol 23, 3798-3812.
Lai, W.S., Stumpo, D.J., and Blackshear, P.J. (1990). Rapid insulin-stimulated accumulation of an mRNA encoding a proline-rich protein. J Biol Chem 265, 16556-16563.
Lang, R., Hammer, M., and Mages, J. (2006). DUSP meet immunology: dual specificity MAPK phosphatases in control of the inflammatory response. J Immunol 177, 7497-7504.
Lau, D.C., Dhillon, B., Yan, H., Szmitko, P.E., and Verma, S. (2005). Adipokines: molecular links between obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol 288, H2031-2041.
Lean, M.E. (2000). Pathophysiology of obesity. Proc Nutr Soc 59, 331-336.
Lin, N.Y., Lin, C.T., and Chang, C.J. (2008). Modulation of immediate early gene expression by tristetraprolin in the differentiation of 3T3-L1 cells. Biochem Biophys Res Commun 365, 69-74.
Lin, N.Y., Lin, C.T., Chen, Y.L., and Chang, C.J. (2007). Regulation of tristetraprolin during differentiation of 3T3-L1 preadipocytes. FEBS J 274, 867-878.
Loda, M., Capodieci, P., Mishra, R., Yao, H., Corless, C., Grigioni, W., Wang, Y., Magi-Galluzzi, C., and Stork, P.J. (1996). Expression of mitogen-activated protein kinase phosphatase-1 in the early phases of human epithelial carcinogenesis. Am J Pathol 149, 1553-1564.
Lykke-Andersen, J., and Wagner, E. (2005). Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev 19, 351-361.
Ma, Q., Wadleigh, D., Chi, T., and Herschman, H. (1994). The Drosophila TIS11 homologue encodes a developmentally controlled gene. Oncogene 9, 3329-3334.
Ma, W.J., Cheng, S., Campbell, C., Wright, A., and Furneaux, H. (1996). Cloning and characterization of HuR, a ubiquitously expressed Elav-like protein. J Biol Chem 271, 8144-8151.
MacDougald, O.A., and Lane, M.D. (1995). Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem 64, 345-373.
Maitra, S., Chou, C.F., Luber, C.A., Lee, K.Y., Mann, M., and Chen, C.Y. (2008). The AU-rich element mRNA decay-promoting activity of BRF1 is regulated by mitogen-activated protein kinase-activated protein kinase 2. RNA 14, 950-959.
Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M., and Tollervey, D. (1997). The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases. Cell 91, 457-466.
Mitchell, P., and Tollervey, D. (2001). mRNA turnover. Curr Opin Cell Biol 13, 320-325.
Moller, D.E., and Flier, J.S. (1991). Insulin resistance--mechanisms, syndromes, and implications. N Engl J Med 325, 938-948.
Muslin, A.J., Tanner, J.W., Allen, P.M., and Shaw, A.S. (1996). Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84, 889-897.
Novakofski, J. (2004). Adipogenesis: usefulness of in vitro and in vivo experimental models. J Anim Sci 82, 905-915.
Ntambi, J.M., and Young-Cheul, K. (2000). Adipocyte differentiation and gene expression. J Nutr 130, 3122S-3126S.
Oishi, Y., Manabe, I., Tobe, K., Tsushima, K., Shindo, T., Fujiu, K., Nishimura, G., Maemura, K., Yamauchi, T., Kubota, N., et al. (2005). Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab 1, 27-39.
Pandey, N.B., and Marzluff, W.F. (1987). The stem-loop structure at the 3' end of histone mRNA is necessary and sufficient for regulation of histone mRNA stability. Mol Cell Biol 7, 4557-4559.
Parker, R., and Sheth, U. (2007). P bodies and the control of mRNA translation and degradation. Mol Cell 25, 635-646.
Phillips, R.S., Ramos, S.B., and Blackshear, P.J. (2002). Members of the tristetraprolin family of tandem CCCH zinc finger proteins exhibit CRM1-dependent nucleocytoplasmic shuttling. J Biol Chem 277, 11606-11613.
Raghavan, A., and Bohjanen, P.R. (2004). Microarray-based analyses of mRNA decay in the regulation of mammalian gene expression. Brief Funct Genomic Proteomic 3, 112-124.
Rosen, E.D., Hsu, C.H., Wang, X., Sakai, S., Freeman, M.W., Gonzalez, F.J., and Spiegelman, B.M. (2002). C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev 16, 22-26.
Rosen, E.D., Sarraf, P., Troy, A.E., Bradwin, G., Moore, K., Milstone, D.S., Spiegelman, B.M., and Mortensen, R.M. (1999). PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4, 611-617.
Rosen, E.D., and Spiegelman, B.M. (2006). Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444, 847-853.
Sakaue, H., Ogawa, W., Nakamura, T., Mori, T., Nakamura, K., and Kasuga, M. (2004). Role of MAPK phosphatase-1 (MKP-1) in adipocyte differentiation. J Biol Chem 279, 39951-39957.
Salojin, K.V., Owusu, I.B., Millerchip, K.A., Potter, M., Platt, K.A., and Oravecz, T. (2006). Essential role of MAPK phosphatase-1 in the negative control of innate immune responses. J Immunol 176, 1899-1907.
Savant-Bhonsale, S., and Cleveland, D.W. (1992). Evidence for instability of mRNAs containing AUUUA motifs mediated through translation-dependent assembly of a > 20S degradation complex. Genes Dev 6, 1927-1939.
Schiavi, S.C., Wellington, C.L., Shyu, A.B., Chen, C.Y., Greenberg, M.E., and Belasco, J.G. (1994). Multiple elements in the c-fos protein-coding region facilitate mRNA deadenylation and decay by a mechanism coupled to translation. J Biol Chem 269, 3441-3448.
Schmidlin, M., Lu, M., Leuenberger, S.A., Stoecklin, G., Mallaun, M., Gross, B., Gherzi, R., Hess, D., Hemmings, B.A., and Moroni, C. (2004). The ARE-dependent mRNA-destabilizing activity of BRF1 is regulated by protein kinase B. EMBO J 23, 4760-4769.
Sgambato, V., Pages, C., Rogard, M., Besson, M.J., and Caboche, J. (1998). Extracellular signal-regulated kinase (ERK) controls immediate early gene induction on corticostriatal stimulation. J Neurosci 18, 8814-8825.
Shaw, G., and Kamen, R. (1986). A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46, 659-667.
Sheth, U., and Parker, R. (2003). Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805-808.
Shimada, H., Ichikawa, H., Nakamura, S., Katsu, R., Iwasa, M., Kitabayashi, I., and Ohki, M. (2000). Analysis of genes under the downstream control of the t(8;21) fusion protein AML1-MTG8: overexpression of the TIS11b (ERF-1, cMG1) gene induces myeloid cell proliferation in response to G-CSF. Blood 96, 655-663.
Shyu, A.B., Greenberg, M.E., and Belasco, J.G. (1989). The c-fos transcript is targeted for rapid decay by two distinct mRNA degradation pathways. Genes Dev 3, 60-72.
Slack, D.N., Seternes, O.M., Gabrielsen, M., and Keyse, S.M. (2001). Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1. J Biol Chem 276, 16491-16500.
Spiegelman, B.M., Choy, L., Hotamisligil, G.S., Graves, R.A., and Tontonoz, P. (1993). Regulation of adipocyte gene expression in differentiation and syndromes of obesity/diabetes. J Biol Chem 268, 6823-6826.
Stephens, J.M., Butts, M.D., and Pekala, P.H. (1992). Regulation of transcription factor mRNA accumulation during 3T3-L1 preadipocyte differentiation by tumour necrosis factor-alpha. J Mol Endocrinol 9, 61-72.
Stevens, C.J., Schipper, H., Samallo, J., Stroband, H.W., and te Kronnie, T. (1998). Blastomeres and cells with mesendodermal fates of carp embryos express cth1, a member of the TIS11 family of primary response genes. Int J Dev Biol 42, 181-188.
Stoecklin, G., Colombi, M., Raineri, I., Leuenberger, S., Mallaun, M., Schmidlin, M., Gross, B., Lu, M., Kitamura, T., and Moroni, C. (2002). Functional cloning of BRF1, a regulator of ARE-dependent mRNA turnover. EMBO J 21, 4709-4718.
Stoecklin, G., Gross, B., Ming, X.F., and Moroni, C. (2003a). A novel mechanism of tumor suppression by destabilizing AU-rich growth factor mRNA. Oncogene 22, 3554-3561.
Stoecklin, G., Lu, M., Rattenbacher, B., and Moroni, C. (2003b). A constitutive decay element promotes tumor necrosis factor alpha mRNA degradation via an AU-rich element-independent pathway. Mol Cell Biol 23, 3506-3515.
Stumpo, D.J., Broxmeyer, H.E., Ward, T., Cooper, S., Hangoc, G., Chung, Y.J., Shelley, W.C., Richfield, E.K., Ray, M.K., Yoder, M.C., et al. (2009). Targeted disruption of Zfp36l2, encoding a CCCH tandem zinc finger RNA-binding protein, results in defective hematopoiesis. Blood 114, 2401-2410.
Stumpo, D.J., Byrd, N.A., Phillips, R.S., Ghosh, S., Maronpot, R.R., Castranio, T., Meyers, E.N., Mishina, Y., and Blackshear, P.J. (2004). Chorioallantoic fusion defects and embryonic lethality resulting from disruption of Zfp36L1, a gene encoding a CCCH tandem zinc finger protein of the Tristetraprolin family. Mol Cell Biol 24, 6445-6455.
Szabo, A., Dalmau, J., Manley, G., Rosenfeld, M., Wong, E., Henson, J., Posner, J.B., and Furneaux, H.M. (1991). HuD, a paraneoplastic encephalomyelitis antigen, contains RNA-binding domains and is homologous to Elav and Sex-lethal. Cell 67, 325-333.
Tang, Q.Q., Otto, T.C., and Lane, M.D. (2003). Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc Natl Acad Sci U S A 100, 44-49.
Taylor, G.A., Carballo, E., Lee, D.M., Lai, W.S., Thompson, M.J., Patel, D.D., Schenkman, D.I., Gilkeson, G.S., Broxmeyer, H.E., Haynes, B.F., et al. (1996a). A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4, 445-454.
Taylor, G.A., Lai, W.S., Oakey, R.J., Seldin, M.F., Shows, T.B., Eddy, R.L., Jr., and Blackshear, P.J. (1991). The human TTP protein: sequence, alignment with related proteins, and chromosomal localization of the mouse and human genes. Nucleic Acids Res 19, 3454.
Taylor, G.A., Thompson, M.J., Lai, W.S., and Blackshear, P.J. (1995). Phosphorylation of tristetraprolin, a potential zinc finger transcription factor, by mitogen stimulation in intact cells and by mitogen-activated protein kinase in vitro. J Biol Chem 270, 13341-13347.
Taylor, G.A., Thompson, M.J., Lai, W.S., and Blackshear, P.J. (1996b). Mitogens stimulate the rapid nuclear to cytosolic translocation of tristetraprolin, a potential zinc-finger transcription factor. Mol Endocrinol 10, 140-146.
Teixeira, D., Sheth, U., Valencia-Sanchez, M.A., Brengues, M., and Parker, R. (2005). Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11, 371-382.
Tharun, S., and Parker, R. (2001). Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs. Mol Cell 8, 1075-1083.
Thompson, M.J., Lai, W.S., Taylor, G.A., and Blackshear, P.J. (1996). Cloning and characterization of two yeast genes encoding members of the CCCH class of zinc finger proteins: zinc finger-mediated impairment of cell growth. Gene 174, 225-233.
Varnum, B.C., Lim, R.W., Sukhatme, V.P., and Herschman, H.R. (1989). Nucleotide sequence of a cDNA encoding TIS11, a message induced in Swiss 3T3 cells by the tumor promoter tetradecanoyl phorbol acetate. Oncogene 4, 119-120.
Varnum, B.C., Ma, Q.F., Chi, T.H., Fletcher, B., and Herschman, H.R. (1991). The TIS11 primary response gene is a member of a gene family that encodes proteins with a highly conserved sequence containing an unusual Cys-His repeat. Mol Cell Biol 11, 1754-1758.
Viengchareun, S., Kamenicky, P., Teixeira, M., Butlen, D., Meduri, G., Blanchard-Gutton, N., Kurschat, C., Lanel, A., Martinerie, L., Sztal-Mazer, S., et al. (2009). Osmotic stress regulates mineralocorticoid receptor expression in a novel aldosterone-sensitive cortical collecting duct cell line. Mol Endocrinol 23, 1948-1962.
Wang, X., and Liu, Y. (2007). Regulation of innate immune response by MAP kinase phosphatase-1. Cell Signal 19, 1372-1382.
Wegmuller, D., Raineri, I., Gross, B., Oakeley, E.J., and Moroni, C. (2007). A cassette system to study embryonic stem cell differentiation by inducible RNA interference. Stem Cells 25, 1178-1185.
Wilusz, C.J., Wormington, M., and Peltz, S.W. (2001). The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol 2, 237-246.
Wu, J.J., Roth, R.J., Anderson, E.J., Hong, E.G., Lee, M.K., Choi, C.S., Neufer, P.D., Shulman, G.I., Kim, J.K., and Bennett, A.M. (2006). Mice lacking MAP kinase phosphatase-1 have enhanced MAP kinase activity and resistance to diet-induced obesity. Cell Metab 4, 61-73.
Wu, Z., Rosen, E.D., Brun, R., Hauser, S., Adelmant, G., Troy, A.E., McKeon, C., Darlington, G.J., and Spiegelman, B.M. (1999). Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell 3, 151-158.
Yeh, W.C., Cao, Z., Classon, M., and McKnight, S.L. (1995). Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev 9, 168-181.
Zhang, T., Kruys, V., Huez, G., and Gueydan, C. (2002). AU-rich element-mediated translational control: complexity and multiple activities of trans-activating factors. Biochem Soc Trans 30, 952-958.
Zubiaga, A.M., Belasco, J.G., and Greenberg, M.E. (1995). The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol Cell Biol 15, 2219-2230.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45912-
dc.description.abstract當3T3-L1脂肪細胞接收到分化訊號之刺激後,立即早期基因(Immediate early genes, IEGs)會立刻被大量的表現,但不久後其表現量又會快速的下降。此種特殊的基因表現方式已經知道是藉由調控其訊息RNA(messenger RNA, mRNA)的轉錄(transcription)和後轉錄(post-transcription)來達成。其中引起我們興趣的是,到底這類基因是經由何種機轉來達成如此劇烈的表現量變化。之前的研究指出,TTP蛋白質在3T3-L1脂肪細胞早期分化的時期會受到刺激而表現,並且會專一性的辨認一個立即早期基因MKP-1 mRNA上的多腺嘌呤-尿嘧啶序列(AU-rich elements, ARE)。TTP一旦與MKP-1 mRNA結合,就會導致此RNA的穩定性大幅下降,最後導致其表現量減少。然而在脂肪細胞的分化過程中,關於其他TTP家族成員的表現與功能至今還未被探討。因此,本篇研究主要的目的就是探討在脂肪細胞早期分化的過程中,另外一個TTP家族成員ZFP36L1所扮演的角色為何。藉由自製ZFP36L1專一性抗體的西方點漬法分析後發現,不同於TTP需要經由刺激才會被細胞表現的現象,ZFP36L1在脂肪細胞早期分化的過程中具有雙峰表現(biphasic expression)的特性。進一步研究發現,ZFP36L1是一個非常不穩定的蛋白質,但3T3-L1細胞經由刺激後導致ZFP36L1蛋白質量上的減少,卻主要是來自於轉譯層面(translational level)上的調控。同時也發現,除了在表現量上的差異外,ZFP36L1對於MKP-1 mRNA的結合與去穩定化的能力幾乎與TTP一樣,顯示細胞可能藉由同時調控ZFP36L1和TTP的表現,達到控制立即早期基因表現的目的。此外,在血清的刺激下,ZFP36L1會被 ERK/MAPK大量磷酸化,且一旦ZFP36L1被磷酸化後,其對於MKP-1 mRNA去穩定(destabilization)的能力會下降。最後,如果利用用病毒感染(lentiviral infection)的方式將小髮夾RNA(small-hairpin RNA, shRNA)送入3T3-L1中去抑制ZFP36L1的表現,MKP-1和立即早期基因的表現量都會大幅提高,而且會導致脂肪細胞無法順利分化。本篇研究提出了一個新的立即早期基因表現的調控模式,並且發現ZFP36L1在脂肪細胞分化過程中可能還扮演了重要的角色。zh_TW
dc.description.abstractImmediate-early genes (IEGs) are expressed instantly after the trigger of 3T3L1 preadipocyte differentiation and are under tight controls at transcriptional and post-transcriptional levels. The mechanisms underlying the rapid clearance of IEG mRNAs are of our interest. Our previous studies have revealed that Tristetraprolin (TTP), a RNA binding protein, recognized and destabilized MAP kinase phosphatase-1 (MKP-1) mRNAs through a mechanism called Adenyl/Uracil-rich (AU-rich) elements-mediated mRNA decay (AMD). However, the functions of other members in TTP protein family are not well-characterized in adipogenesis. In this study, we showed that ZFP36L1, another TTP family member, played roles in cell proliferation and post-transcriptional gene regulation in adipogenesis. In contrast to the inducible-property of TTP, ZFP36L1 protein was biphasically expressed within the first hour after induction and the expression of MKP-1 mRNA was reciprocal to the protein dynamics of ZFP36L1. This unusual protein dynamics was achieved by translational repression rather than by the change of ZFP36L1 protein stability. Importantly, the MKP-1 mRNA-binding and destabilizing abilities of ZFP36L1 were comparable to TTP and knockdown of ZFP36L1 in 3T3-L1 cells resulted in an upsurge of MKP-1 mRNA. Moreover, ZFP36L1 underwent a significant phosphorylation by ERK signaling immediately after induction and the phosphorylation status seemed to have some effects on its mRNA destabilizing ability. Finally, the effect of ZFP36L1 on the whole process of adipogenesis was investigated. This study elucidates a possible role of ZFP36L1 in adipogenesis and indicates that 3T3-L1 differentiating cells accomplish an elaborate regulation of MKP-1 mRNA expression by coordinating ZFP36L1 and TTP protein dynamics.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:48:42Z (GMT). No. of bitstreams: 1
ntu-99-R97b46024-1.pdf: 2708857 bytes, checksum: da5a20f12a7df1860a7b59fea15f4495 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝................................................................................................................................ i
中文摘要........................................................................................................................ ii
Abstract ......................................................................................................................... iv
Table of Contents .......................................................................................................... vi
Abbreviations ................................................................................................................ ix
I. Introduction ............................................................................................................... 1
1.1 Overview of mRNA degradation pathways ........................................................ 1
1.2 ARE-mediated mRNA decay(AMD) ................................................................... 2
1.2.1 Classification of AREs ................................................................................ 3
1.2.2 Trans-acting factors of AMD ...................................................................... 4
1.3 Tristetraprolin(TTP) protein family ................................................................... 4
1.3.1 Tristetraprolin(TTP) .................................................................................... 5
1.3.2 ZFP36-Like-1(ZFP36L1) ............................................................................ 9
1.3.3 ZFP36-Like-2(ZFP36L2) and ZFP36-Like-3(ZFP36L3) ......................... 11
1.4 Adipogenesis and associated diseases ............................................................. 11
1.4.1 Adipocyte lineage and experimental models ............................................. 12
1.4.2 The differentiation process of preadipocyte .............................................. 13
1.4.3 Transcriptional events during adipogenesis ............................................. 14
1.5 Mitogen-activated protein kinase phosphatase-1(MKP-1) .............................. 15
II. Materials and Methods ............................................................................................ 17
2.1 Plasmid constructs ........................................................................................... 17
2.2 Cell cultures ..................................................................................................... 17
2.3 Preparation of whole-cell extracts(WCE) or cytoplasmic/nuclear extracts .... 18
2.4 Western blot analysis and Antibodies ............................................................... 19
2.5 Inhibitor treatments and In vivo kinase assays ................................................ 20
2.6 RNA extraction, reverse-transcription ............................................................. 21
2.7 Real-time PCR .................................................................................................. 21
2.8 Northern blots .................................................................................................. 22
2.9 Calf intestinal alkaline phosphatase(CIP) assay ............................................. 23
2.10 RNA pull-down assays ...................................................................................... 23
2.11 Luciferase reporter assays ............................................................................... 24
2.12 In vivo ubiquitination assay ............................................................................. 25
2.13 Sucrose gradient for polysome profiles ............................................................ 25
2.14 Lentiviral gene knockdown assays ................................................................... 27
III. Results .............................................................................................................. 29
3.1 Characterization of anti-ZFP36L1 antibodies ................................................. 29
vii
3.3 Differential effects of inducer signaling on ZFP36L1 at protein level ............ 31
3.4 The ZFP36L1 was a labile protein, which was degraded through proteasomal pathway ............................................................................................................ 32
3.5 The decrease of ZFP36L1 protein in early phase of adipogenesis was regulated at translational level ........................................................................ 33
3.6 ZFP36L1 recognized and destabilized MKP-1 mRNA ..................................... 34
3.7 Phosphorylation of ZFP36L1 by ERK signaling impaired its mRNA destabilizing function ....................................................................................... 35
3.8 ZFP36L1 knockdown resulted in the mRNA upsurge of MKP-1 and other IEGs 36
3.9 The existence of ZFP36L1 crucial in mitotic clonal expansion(MCE) process . 37
IV. Disccussion ............................................................................................................. 39
V. References ............................................................................................................... 48
VI. Figures .............................................................................................................. 61
Figure 1. Sequence alignment of mouse TTP family proteins ................................. 61
Figure 2. Anti-ZFP36L1 antibodies specifically recognized ZFP36L1 ................... 63
Figure 3. The expression profiles of ZFP36L1 protein and mRNA during the immediate-early stage of 3T3-L1 preadipocyte differentiation ....................... 65
Figure 4. FBS-stimulation caused immediate electrophoretc-mobility shift of ZFP36L1, while MDI-treatments resulted in down-regulation of ZFP36L1 proteins ............................................................................................................. 66
Figure 5. ZFP36L1 protein half-lives at various differentiation time points were determined by cycloheximide treatments......................................................... 67
Figure 6. MG132 treatments significantly increased the protein level of ZFP36L1 and resulted in a down-regulation of MKP-1 mRNA ...................................... 69
Figure 7. ZFP36L1 was poly-ubiquitinated in In vitro ubiquitination assays ......... 70
Figure 8. ZFP36L1 mRNA left polyribosome immediately after the trigger of 3T3-L1 differentiation ...................................................................................... 72
Figure 9. ZFP36L1 physiologically interacted with three ARE-containing fragments of MKP-1 3‟UTR ............................................................................................. 73
Figure 10 Ectopic expressed ZFP36L1 down-regulated the MKP-1 3‟UTR containing luciferase reporter in HEK293T cells ............................................. 75
Figure 11. FBS-induced electrophoretic-mobility shift of ZFP36L1 was mainly caused by hyper-phosphorylation through ERK signaling .............................. 77
Figure 12. Phosphorylation of ZFP36L1 by ERK signaling resulted in the stabilization of MKP-1 3‟UTR-containing luciferase mRNA ......................... 79
Figure 13. ZFP36L1 knockdown resulted in the mRNA upsurge of MKP-1 and other IEGs ........................................................................................................ 81
viii
Figure 14. ZFP36L1 existed throughout adipogenesis and was crucial for mitotic clonal expansion(MCE) ................................................................................... 82
VII. Tables ............................................................................................................... 84
dc.language.isoen
dc.title脂肪細胞早期分化時期ZFP36L1蛋白質調控MKP-1和其他立即早期基因表現之機制探討zh_TW
dc.titleZFP36L1 Regulates the mRNA Expression of MAPK Phoshatase-1 and Other Immediate-Early Genes during the Early Stage of Adipogenesisen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張震東,陳宏文,蔡有光,張茂山
dc.subject.keyword脂肪細胞分化,多腺嘌呤-尿嘧啶序列,立即早期基因,TTP,ZFP36L1,MKP-1,轉譯後修飾,轉錄後調控機制,zh_TW
dc.subject.keywordAdipocytes differentiation,AU-rich elements,ARE-mediated mRNA decay (AMD),immediate-early genes,TTP,ZFP36L1,MKP-1,post-translational modifications,en
dc.relation.page84
dc.rights.note有償授權
dc.date.accepted2010-08-04
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
2.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved