Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45902
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳榮凱(Jung-Kai Chen)
dc.contributor.authorJheng-Jie Chenen
dc.contributor.author陳正傑zh_TW
dc.date.accessioned2021-06-15T04:48:28Z-
dc.date.available2010-08-05
dc.date.copyright2010-08-05
dc.date.issued2010
dc.date.submitted2010-08-03
dc.identifier.citationBibliography
[1] S. Altinok, G. Brown, M. Reid, Fano 3-folds, K3 Surfaces and graded rings. Topology and geometry: commemorating SISTAG, 25-53, Contemp. Math., 314, Amer.Math. Soc., Providence, RI, 2002.
[2] S. Altinok and M. Reid, Three Fano 3-folds with $| − K| $=$ emptyset$, Preprint.
[3] G. Brown, K. Suzuki, Fano 3-folds with divisible anticanonical class, Manuscripta Math. 123 (2007), 37–51.
[4] A. Corti, A. Pukhlikov, M. Reid, Fano 3-folds hypersurfaces. Explicit birational geometry of 3-folds,
175-258, London Math. Soc. Lecture Note Series, 281. Cambridge University Press, Cambridge, 2000.
[5] J. A. Chen, M. Chen, Explicit birational geometry for 3-folds of general type, preprint. arXiv: 0706.2987.
[6] J. A. Chen, M. Chen, Explicit birational geometry of 3-folds of general type I, Ann Sci Ecole Norm Sup (to appear). arXiv: 0810.5041.
[7] J. A. Chen, M. Chen, Explicit birational geometry of 3-folds of general type II, Journal of Differential Geometry (to appear). arXiv:0810.5044.
[8] J. A. Chen, M. Chen, An optimal boundedness on weak $mathbb{Q}$-Fano 3-folds, Adv. Math. 219(2008), 2086-2104. arXiv: 0712.4356.
[9] J.J. Chen, J.A. Chen, M. Chen On quasismooth weighted complete intersections, Jour. Alg. Geom, to appear. arXiv 0908.1439.
[10] A. Dimca, Singularities and coverings of weighted complete intersections. J. Reine Angew. Math. 366 (1986), 184-193.
[11] I. Dolgachev, Weighted projective space, Group actions and vector fields, Proc. Vancouver 1981 LNM 956, 34-71 Springer Verlag.
[12] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer-Verlag, New York, Heidelberg, Berlin, 1977.
[13] T. Hayakawa, Blowing Ups of 3-dimensional Terminal Singularities, Publ. RIMS. Kyoto Univ., 35 (1999), 515-570.
[14] T. Hayakawa, Blowing Ups of 3-dimensional Terminal Singularities II, Publ. RIMS. Kyoto Univ., 36, Number 3 (2000), 423-456.
[15] A. R. Iano-Fletcher, Contributions to Riemann-Roch on projective 3-folds with only canonical singularities and applications, Proc. Symposia in Pure Math 46 (1987) Vol 1, pp. 221-231.
[16] A. R. Iano-Fletcher, Working with weighted complete intersections, Explicit birational geometry of 3-folds, 101-173, London Math. Soc. Lecture Note Series, 281. Cambridge University Press, Cambridge, 2000.
[17] M. Kawakita, Divisorial contractions in dimension three which contract divisors to smooth points, Inventiones Mathematicae 145 (2001), 105-119.
[18] Y. Kawamata, Boundedness of $mathbb{Q}$-Fano threefolds. Proceedings of the International Conference on Algebra,Part 3 (Novosibirsk,1989), 439–445, Contemp. Math., 131, Part 3, Amer. Math. Soc., Providence, RI, 1992.
[19] Y. Kawamata, Divisorial contractions to 3-dimensional terminal quotient singularities, Higher dimensional complex varieties, de-Gruyter, Berlin. 1996) 241-246.
[20] Y. Kawamata, On the plurigenera of minimal algebraic 3-folds with K$equiv $0, Math. Ann. 275 (1986) 539-546.
[21] Y. Kawamata, K. Masuda, K. Matsuki, introduction to minimal model problem, Adv. Stud. Pure Math. 10, Alg. Geom., Sendai, T.Oda ed.(1985) , 283-360.
[22] V. A. Khinich, When is a ring of invariants of a Gorenstein ring also Gorenstein?, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976) 50-56=Math. USSR Izv. 10 (1976) 47-54.
[23] J. Koll´ar, Shafarevich maps and automorphic forms.
M. B. Porter Lectures. Princeton University Press, Princeton, NJ, 1995.
[24] J. Koll´ar, S. Mori, Birational geometry of algebraic varieties, M. B. Porter Lectures. Princeton University Press, Princeton, NJ, 1995.
[25] J. Koll´ar, S. Mori, Classification of three dimensional flips, J. Amer. Math. Soc., 5 (1992), 533-703.
[26] J. Koll´ar, Y. Miyaoka, S. Mori, H. Takagi, Boundedness of canonical $matbb{Q}$-Fano 3-folds,
Proc. Japan Acad. 76, Ser. A (2000), 73-77.
[27] M. Reid, Minimal models of canonical 3–folds, Advanced studies in Pure Math. 1, Analytic varieties and algebraic varieties, (1983) 131-180.
[28] M. Reid, Canonical 3-folds, Journ´ees de G´eom´etrie Alg´ebriqued’Angers, A. Beauville (editor), Sijthoff and Noordhoff, Alphenaan den Rijn, 1980, pp. 273-310.
[29] M. Reid, Young person’s guide to canonical singularities, Proc. Symposia in pure Math. 46(1987), 345-414.
[30] K. Suzuki, On Fano indices of $mathbb{Q}$-Fano 3-folds,
Manuscripta Math. 114 (2004), 229-246.
[31] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116 (1982), 133-176.
[32] S. Mori, On 3-dimensional terminal singularities, Nagoya Math J. 98(1985), 43-66.
[33] S. Mori, D. R. Morrison and I. Morrison, On four-dimensional terminal quotient singularities,
Math. Comp. 51 (1988), 769–786.
[34] K. Watanabe, Certain invariant subrings are Gorenstein,I and II, Osaka J. Math. 11 (1974) 1-8 and 379-388.
[35] L. Zhu, The sharp lower bound for the volume of 3-folds of general type with $chi$ $mathcal{O}_X = 1$, Math. Z. 261 (2009), 123-141. arXiv:0710.4409.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45902-
dc.description.abstractWe give the codimension bound for quasismooth weighted
complete intersections and also provide several complete
lists on quasismooth weighted complete intersections which
are terminal 3-folds (cf. [16]) and prove the finiteness
of these families for every fixed amplitude . We have
two counterexamples (which are different from 3-folds) for
higher dimensional varieties with only terminal singularities.
We prove the divisorial contraction to terminal cyclic
quotient $(X, P) = C^n/Z_r(a_1, a_2, ..., a_n)$ with minimal discrepancy
$1/r$ is unique.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:48:28Z (GMT). No. of bitstreams: 1
ntu-99-D94221006-1.pdf: 623213 bytes, checksum: d5cb0737c4062e0aa428bd4b14065015 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsContents
1. Introduction 1
2. Back ground materials 4
3. Proof of theorem 1.3 6
4. Singularities and some theorems 9
5. General properties of w.c.i. threefolds and the classification of weighted terminal Calabi-Yau threefolds 11
6. Examples and finiteness of weighted complete intersections 15
7. Baskets of singularities 18
8. Weighted terminal Q-Fano 3-folds 24
9. Weighted terminal 3-folds of general type 25
10. Weighted terminal 3-folds for several amplitudes $alpha$$leq$ −2 and $alpha$ =2 28
11. Generalization of theorem 1.3 and embedding dimension 31
12. Divisorial contractions to terminal cyclic quotient singularities 34
13. Tables of complete lists 41
Bibliography 49
dc.language.isoen
dc.title高維度奇異點之研究zh_TW
dc.titleOn Higher Dimensional Singularitiesen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee王金龍(Chin-Lung Wang),林惠雯(Hui-Wen Lin),陳俊成(Jiun-Cheng Chen),夏杼(Zhu Eugene Xia),王立中(Lih-Chung Wang)
dc.subject.keyword高維度奇異點,半平滑,加權完全相交的曲體,完備列表,嵌入維度,川又雄二郎blowup,加權blowup,zh_TW
dc.subject.keywordhigher dimensional singularities,quasismooth,weighted complete intersections,complete lists,embedding dimension,Kawamata blowup,weighted blowup,en
dc.relation.page51
dc.rights.note有償授權
dc.date.accepted2010-08-04
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
608.61 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved