Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45892
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪宏基(Hong-Ki Hong)
dc.contributor.authorYa-Hsuan Linen
dc.contributor.author林亞萱zh_TW
dc.date.accessioned2021-06-15T04:48:15Z-
dc.date.available2011-08-06
dc.date.copyright2010-08-06
dc.date.issued2010
dc.date.submitted2010-08-03
dc.identifier.citation[1] Back, A. Y., and Will, K. M., A shear-flexible element with warping for thin-walled open beams, Int. J. Numer. Meth. Eng., Vol.43, pp.1173-1191, 1998.
[2] Boresi, A. P., Schmidt, R. J., and Sidebottom, O. M., Advanced mechanics of materials. Wiley, New York, 1993.
[3] Borkowski, A., Analysis of Skeletal Structural Systems in the Elastic and Elastic-Plastic Range. Elsevier, Amsterdam, 1988.
[4] Cowper, G. R., The shear coefficient in Timoshenko's beam theory, ASME J. Appl. Mech., Vol.33, pp.335-340, 1966.
[5] Dym, C. L., and Shames, I. H., Solid mechanics : a variational approach. McGraw-Hill, New York, 1973.
[6] Erkmen, R. E., and Mohareb, M., Torsion analysis of thin-walled beams including shear deformation effects, Thin-Walled Struct., Vol.44, pp. 1096-1108, 2006.
[7] Fung, Y. C., An introduction to the theory of aeroelasticity. Dover, New York, 1993.
[8] Hutchinson, J. R., Shear coefficient for Timoshenko beam theory, ASME J. Appl. Mech., Vol.68, pp.87-92, 2001.
[9] Laws, V., Derivation of the tensile stress-strain curve from bending bending data, J. Mater. Sci., Vol.16, pp.1299-1304, 1981.
[10] Laws, V., The relationship between tensile and bending properties of non-linear composite materials , J. Mater. Sci., Vol.17, pp.2919-2924, 1982.
[11] Love, A. E. H., A treatise on the mathematical theory of elasticity. 4th ed., Cambridge University Press, 1927, Dover, New York, 1944.
[12] Mayville, R. A., and Finnie, I., Uniaxial stress-strain curves from a bending test, Exp. Mech., Vol.22, pp.197-201, 1982.
[13] Nadai, A., Theory of flow and fracture of solids. McGraw-Hill, New York, 1950.
[14] Oden, J. T., and Ripperger, E. A., Mechanics of elastic structures. 2nd ed. McGraw-Hill, New York, 1981.
[15] Schajer, G.S., and An, Y. Inverse calculation of uniaxial stress-strain curves from bending test data, ASME J. Eng. Mater. Technol., Vol.131, 2009.
[16] Silvestre, N., Distortional mechanics of restrained steel section J. Constructional Steel Research, Uol.66, pp.873-884, 2010.
[17] Sokolnikoff, I. S., Mathematical theory of elasticity. McGraw-Hill, New York, 1946.
[18] Stephen, N. G., Timoshenko's shear coefficient frome a beam subjected to gravity loading. ASME J. Appl. Mech., Vol.47, pp.121-127, 1980.
[19] Strang, G., A framework for equilibrium equations, SIAM Review, Vol.30, No.2, pp.283-297, 1988.
[20] Timoshenko, S. P., On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine, Vol.41, pp.744-746, 1922.
[21] Timoshenko, S. P., History of strength of materials. McGraw-Hill, New York, 1953.
[22] Timoshenko, S. P., and Goodier, J. N., Theory of elasticity. McGraw-Hill, New York, 1970.
[23] Wu, H. C., Determination of shear stress-strain curve from torsion test for loading-unloading and cyclic loading, J. Eng. Mater. and Technology, Vol.119, pp.113-115, 1997.
[24] Wu, H. C., Continuum mechanics and plasticity. Boca Raton, New York, 2005.
[25] Yang, W. H., A duality theory for plastic torsion, Int. J. Solids Struct., Vol.27, No.15, pp.1981-1989, 1990.
[26] Yoo, C. H., Bimoment contribution to stability of thin-walled assemblages, Comp. Struct., Vol.11, pp.465-471, 1979.
[27] 武際可,王敏中,王煒,彈性力學引論(修訂版)。北京大學出版社,北京,2001。
[28] 王敏中,王煒,武際可,彈性力學教程。北京大學出版社,北京,2001。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45892-
dc.description.abstract本文發展包含六種變形機制的均質等剖面直梁理論,分別是軸向變形機制、扭轉變形機制、剪切變形機制、撓曲變形機制、翹曲變形機制與剖面縮脹變形機制。前四種變形機制在傳統的桿、軸、梁、柱理論中常見,特別的是翹曲變形機制,共分為三項,與三個調和函數相乘後,使縱向產生翹曲。此三個調和函數分別是扭轉翹曲函數與剖面兩向的撓曲函數。而剖面形狀可以是實心、空心、薄壁、厚壁、開剖面、閉剖面、單連通、多連通等任意形狀。
另外引進力學層次的概念,使得本梁理論建立在滿足彈性力學的機動協調、組成律以及力平衡的基礎上。再利用能量守恆原理,令虛功相等,並透過對位移的假設,將六種變形機制疊加,使得梁理論得以由彈性力學中的三維微元,推廣衍生至材料力學中的一維微元以及結構學的離散構件與結構中。
文中並介紹矩形梁受到純彎矩作用時,利用彎矩與曲率的曲線(材料力學層次的組成律)能夠反算求得應力與應變的曲線(彈性力學層次的組成律)方法,並且與實驗結果進行對照。由於梁受彎矩後在剖面上以中性軸為分界,一端受拉,一端受壓,因此受拉側與受壓側的組成律是否相同會影響計算的結果,因而理論中將區分為拉壓組成律相同的材料以及拉壓組成律不相同的材料。實驗則採用鋁合金6061,拉壓組成律相同,中性軸不移動的材料,經實驗結果與理論對照後,發現在彎矩加載、卸載以及反向加載時都能有不錯的結果。另以鑄鐵模擬拉壓組成律不相同,中性軸會移動的材料,但受限於材料性質不穩定,因而導致實驗結果與理論對照結果不甚理想。
zh_TW
dc.description.abstractIn this thesis we consider a beam theory with six deformation modes: axial deformation, torsional deformation, shear deformation, bending deformation,
warping deformation and section homothetic deformations.
The first four modes are often seen in rods, shafts, beams and columns. The special one is warping deformation. We use three harmonic functions to describe warping. The cross section can be arbitrary, for example solid, hollow, thin-walled, thick-walled, open section, close section.
We also introduce the concept of levels of mechanics, and then our beam theory can satisfy level one, elasticity. Based on principle of virtual work, the beam theory can expand to level two, mechanics of materials, level three and four, structural theory.
Finally, we introduce a method that stress-strain curves can be calculated by using moment-curvature curves, when the beam is subjected to bending moment. Two experimental data from bending tests and axial tests are also presented with aluminum 6061-O specimens. By using this method to calculate stress-strain curves from bending test and then comparing with axial tests, we find that the results are compatible.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:48:15Z (GMT). No. of bitstreams: 1
ntu-99-R97521251-1.pdf: 5052491 bytes, checksum: bb61d04d9651cbe3c802fa1423cfa69c (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents1 導論.......................................1
1.1 前言....................................1
1.2 文獻回顧................................2
1.3 研究動機................................3
1.4 變形機制的分類..........................3
1.5 力學層次介紹............................4
1.6 座標定義................................5
1.7 研究內容................................5
2 梁理論於力學層次第一層.....................7
2.1 基礎理論................................7
2.2 Saint-Venant問題.......................10
2.3 小結...................................15
3 梁理論於力學層次第二層....................17
3.1 基礎理論...............................17
3.2 剪力中心的位置.........................26
3.3 模型簡化以及與現今通用模型之比較.......28
3.4 小結...................................44
4 梁理論於力學層次第三層....................45
4.1 基礎理論...............................45
4.2 小結...................................51
5 梁理論於力學層次第四層....................53
5.1 基礎理論...............................53
5.2 簡化模型:桁架.........................61
5.3 簡化模型:平面構架.....................64
5.4 小結...................................69
6 利用彎矩與曲率求取應力與應變關係..........71
6.1 前言...................................71
6.2 理論背景...............................72
6.3 算例...................................79
6.4 實驗設備...............................80
6.5 實驗方法...............................83
6.6 實驗結果...............................85
6.7 小結...................................87
7 總結......................................89
參考文獻..................................91
附錄一:力學層次之組成....................94
附錄二:符號表...........................109
dc.language.isozh-TW
dc.subject翹曲變形zh_TW
dc.subject組成律zh_TW
dc.subject力平衡zh_TW
dc.subject機動協調zh_TW
dc.subject力學層次zh_TW
dc.subject梁理論zh_TW
dc.subject剖面縮脹變形zh_TW
dc.subjectsection homothetic deformationen
dc.subjectwarping deformationen
dc.subjectconstitutionen
dc.subjectequilibriumen
dc.subjectbeam theoryen
dc.subjectkinematicsen
dc.subjectlevels of mechanicsen
dc.title衍生自彈性力學含多種變形機制之梁理論zh_TW
dc.titleA Beam Theory with Multiple Deformation Modes Based on Elasticityen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳漢津,蕭國模,呂良正
dc.subject.keyword梁理論,力學層次,機動協調,力平衡,組成律,翹曲變形,剖面縮脹變形,zh_TW
dc.subject.keywordbeam theory,levels of mechanics,kinematics,equilibrium,constitution,warping deformation,section homothetic deformation,en
dc.relation.page146
dc.rights.note有償授權
dc.date.accepted2010-08-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
4.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved