Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4588
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃宇廷(Yu-tin Huang)
dc.contributor.authorEn Shihen
dc.contributor.author石恩zh_TW
dc.date.accessioned2021-05-14T17:43:46Z-
dc.date.available2015-08-25
dc.date.available2021-05-14T17:43:46Z-
dc.date.copyright2015-08-25
dc.date.issued2015
dc.date.submitted2015-08-05
dc.identifier.citation[1] R. Britto, F. Cachazo, B. Feng and E. Witten, Phys. Rev. Lett. 94, 181602 (2005) [hep-th/0501052].
[2] N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, JHEP 1003, 020 (2010) [arXiv:0907.5418 [hep-th]].
[3] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. B. Goncharov, A. Postnikov and J. Trnka, [arXiv:1212.5605 [hep-th]].
[4] H. Elvang and Y. t. Huang, [arXiv:1308.1697 [hep-th]].
[5] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, JHEP 0810, 091 (2008) [arXiv:0806.1218 [hep-th]].
[6] K. Hosomichi, K. -M. Lee, S. Lee, S. Lee and J. Park, JHEP 0809, 002 (2008) [arXiv: 0806.4977 [hep-th]].
[7] S. Lee, Phys. Rev. Lett. 105, 151603 (2010) [arXiv:1007.4772 [hep-th]].
[8] Y. -T. Huang and C. Wen, “ABJM amplitudes and the positive orthogonal Grassmannian,” JHEP 1402, 104 (2014) [arXiv:1309.3252 [hep-th]].
[9] Y. -t. Huang, C. Wen and D. Xie, “The Positive orthogonal Grassmannian and loop amplitudes of ABJM,” [arXiv:1402.1479 [hep-th]].
[10] J. M. Drummond, J. M. Henn and J. Plefka, JHEP 0905, 046 (2009) [arXiv: 0902.2987 [hep-th]].
[11] N. Arkani-Hamed and J. Kaplan, JHEP 0804, 076 (2008) [arXiv:0801.2385 [hep-th]].
[12] D. A. McGady and L. Rodina, [arXiv:1408.5125 [hep-th]].
[13] D. Nguyen, M. Spradlin, A. Volovich and C. Wen, JHEP 1007, 045 (2010) [arXiv: 0907.2276 [hep-th]].
[14] A. Hodges, JHEP 1307 (2013) [arXiv:1108.2227 [hep-th]].
[15] N. Arkani-Hamed, F. Cachazo and J. Kaplan, JHEP 1009, 016 (2010) [arXiv: 0808.1446 [hep-th]].
[16] B. Feng and M. Luo, Front. Phys. 7, 533 (2012) [arXiv:1111.5759 [hep-th]].
[17] L. J. Dixon, In *Boulder 1995, QCD and beyond* 539-582 [hep-ph/9601359]. 61
[18] L. J. Dixon, J. Phys. A 44, 454001 (2011) [arXiv:1105.0771 [hep-th]].
[19] L. J. Dixon, [arXiv:1310.5353 [hep-ph]].
[20] R. Boels and F. Brummer, “Introduction to Supersymmetry and Supergravity - or Supersymmetry in 12954 minutes ”
[21] R. Boels “Introduction to Scattering Amplitudes Lecture 1: QCD and the SpinorHelicity Formalism”
[22] R. Britto, J. Phys. A 44, 454006 (2011) [arXiv:1012.4493 [hep-th]].
[23] R. Boels, JHEP 1001, 010 (2010) [arXiv:0908.0738 [hep-th]].
[24] R. H. Boels and C. Schwinn, Phys. Rev. D 84, 065006 (2011) [arXiv:1104.2280 [hep-th]].
[25] M. T. Grisaru and H. N. Pendleton, Some Properties Of Scattering Amplitudes In Supersymmetric Theories, Nucl. Phys. B 124, 81 (1977). M. T. Grisaru, H. N. Pendleton and P. van Nieuwenhuizen, Supergravity And The S Matrix, Phys. Rev. D 15, 996 (1977).
[26] H. Elvang, D. Z. Freedman and M. Kiermaier, J. Phys. A 44, 454009 (2011) [arXiv: 1012.3401 [hep-th]].
[27] J. Wess and J. Bagger, “Supersymmetry and supergravity,”Princeton, USA: Univ. Pr. (1992) 259 p
[28] Y. Tachikawa, Lect. Notes Phys. 890, 2014 [arXiv:1312.2684 [hep-th]].
[29] B. Feng, K. Zhou, C. Qiao and J. Rao, JHEP 1503, 023 (2015) [arXiv:1411.0452 [hep-th]].
[30] B. Feng, J. Rao and K. Zhou, [arXiv:1504.06306 [hep-th]].
[31] P. Benincasa, C. Boucher-Veronneau and F. Cachazo, JHEP 0711, 057 (2007) [hepth/0702032 [HEP-TH]].
[32] P. Benincasa and F. Cachazo, [arXiv:0705.4305 [hep-th]].
[33] Z. Bern, J. J. Carrasco, D. Forde, H. Ita and H. Johansson, Phys. Rev. D 77, 025010 (2008) [arXiv:0707.1035 [hep-th]].
[34] N. Arkani-Hamed and J. Kaplan, JHEP 0804, 076 (2008) [arXiv:0801.2385 [hep-th]].
[35] S. Sannan, “Gravity As The Limit Of The Type II Superstring Theory,” Phys. Rev. D 34, 1749 (1986)
[36] F. A. Berends, W. T. Giele and H. Kuijf, “On relations between multi-gluon and multi-graviton scattering,” Phys. Lett. B 211, 91 (1988). 62
[37] H. Elvang, Y. t. Huang and C. Peng, JHEP 1109, 031 (2011) [arXiv:1102.4843 [hep-th]].
[38] D. Nandan and C. Wen, JHEP 1208, 040 (2012) [arXiv:1204.4841 [hep-th]].
[39] R. Boels, K. J. Larsen, N. A. Obers and M. Vonk, JHEP 0811, 015 (2008) [arXiv: 0808.2598 [hep-th]].
[40] R. H. Boels, D. Marmiroli and N. A. Obers, JHEP 1010, 034 (2010) [arXiv:1002.5029 [hep-th]].
[41] S. He, D. Nandan and C. Wen, JHEP 1102, 005 (2011) [arXiv:1011.4287 [hep-th]].
[42] T. Schuster, Phys. Rev. D 89, no. 10, 105022 (2014) [arXiv:1311.6296 [hep-ph]].
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4588-
dc.description.abstract本論文概覽重力理論中計算散射振幅的新發展,並且針對一種新的計算方法做探討。我們首先回顧旋量-螺度理論、在殼超重力以及在殼遞迴式的理論基礎。之後我們重點討論使用BCFW遞迴式對於超重力振幅的計算。特别是我們呈現一種基於N=7超重力中BCFW遞迴式的散射振幅展開式。這個表示式能夠顯現重力振幅在特定高能量極限下優化的表現。這是尋找重力振幅的自然構件所踏出的初步研究,其終極目標是揭露重力的結構,以其建構能顯現其隱藏對稱性的描述。zh_TW
dc.description.abstractThis thesis reviews some aspects of the modern developments in calculation methods and assesses a new expression for scattering amplitudes in gravity. We first revisit the basics of spinor helicity formalism, on-shell superspace, and on-shell recursion relations. Special focus is then given to calculating supergravity amplitudes using BCFW recursion relations. In particular, we present an expansion in the form of a BCFW representation in N=7 supergravity which can manifest bonus behavior of gravity amplitudes under certain high energy limits. This is a initial step in search of natural building blocks for supergravity amplitudes, taken with the eventual goal of uncovering the structure of gravity and providing a description that can manifest its hidden symmetries.en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:43:46Z (GMT). No. of bitstreams: 1
ntu-104-R01222055-1.pdf: 1008752 bytes, checksum: 07fc0f1fcc4d59037c4b286395f0d6db (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents1. Introduction 7
2. On-shell amplitude methods 12
2.1. Spacetime symmetry and spinor-helicity . . . . . . . . . . . . . . . . . . 12
2.1.1. The Lorentz and Poincare groups . . . . . . . . . . . . . . . . . . 13
2.1.2. Spinor helicity formalism . . . . . . . . . . . . . . . . . . . . . . . 19
2.2. Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1. Global supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2. On-shell superspace . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.3. Supersymmetry Ward identities . . . . . . . . . . . . . . . . . . . 25
2.3. Scattering amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1. The MHV classification . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2. 3-point amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4. On-shell recursion relations . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.1. On-shell recursion relations: a general formulation . . . . . . . . . 28
2.4.2. BCFW recursion relations . . . . . . . . . . . . . . . . . . . . . . 30
2.4.3. Super-BCFW recursion relations . . . . . . . . . . . . . . . . . . 31
2.4.4. Large z behavior under BCFW shifts . . . . . . . . . . . . . . . . 32
3. Supergravity amplitudes 34
3.1. Perturbative gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2. Supergravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3. N = 8 supergravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1. N = 7 formalism of N = 8 supergravity . . . . . . . . . . . . . . 39
3.3.2. N = 7 BCFW recursion . . . . . . . . . . . . . . . . . . . . . . . 41
3.4. N = 7 “bad shift” BCFW representation . . . . . . . . . . . . . . . . . . 42
3.4.1. A particular [−, +⟩ test shift: NkMHV amplitudes . . . . . . . . . 42
3.4.2. Large z behavior under general test shifts . . . . . . . . . . . . . 46
3.4.3. Comparison to other formulas for supergravity amplitudes . . . . 48
3.4.4. N = 8 bonus relations and N = 7 bonus scaling: the MHV case . 49
3.5. Bonus scaling of “bad shift” BCFW for string amplitudes . . . . . . . . . 50
4. Conclusion and Future directions 54
A. Amplitudes of Yang-Mills 56
A.1. Yang-Mills and super-Yang-Mills . . . . . . . . . . . . . . . . . . . . . . 56
A.2. Color structure of Yang-Mills amplitudes . . . . . . . . . . . . . . . . . . 58
A.3. N = 4 super-Yang-Mills . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
dc.language.isoen
dc.subject超重力zh_TW
dc.subject壞位移zh_TW
dc.subject大zzh_TW
dc.subject散射振幅zh_TW
dc.subjectBCFW遞zh_TW
dc.subjectN=7zh_TW
dc.subjectN=8zh_TW
dc.subjectscattering amplitudesen
dc.subjectN=7en
dc.subjectN=8en
dc.subjectsupergravityen
dc.subjectbad shiften
dc.subjectlarge-zen
dc.subjectBCFW recursionen
dc.titleN=7超重力中之優化漸進表現以及BCFWzh_TW
dc.titleBonus Scaling and BCFW in N=7 Supergravityen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳恆榆(Heng-Yu Chen),陳俊瑋(Jiuun-Wei Chen)
dc.subject.keyword散射振幅,超重力,N=8,N=7,BCFW遞,大z,壞位移,zh_TW
dc.subject.keywordscattering amplitudes,supergravity,N=8,N=7,BCFW recursion,large-z,bad shift,en
dc.relation.page63
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-08-05
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf985.11 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved