Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45865
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林順福
dc.contributor.authorTai-Yu Linen
dc.contributor.author林泰佑zh_TW
dc.date.accessioned2021-06-15T04:47:38Z-
dc.date.available2020-08-04
dc.date.copyright2010-08-10
dc.date.issued2010
dc.date.submitted2010-08-04
dc.identifier.citation徐昌傑、陳文峻、陳昆松。1998。澱粉含量測定法-碘顯色法。生物技術8 (2) :41-43
詹雅勛。2007。水稻蠟質基因之DNA序列變異及F2族群之遺傳組成研究。國立台灣大學農藝學研究所碩士論文。
盧煌勝。1994。玉米。雜糧作物各論,蔡文福主編。財團法人台灣區雜糧發展基金會,台北,台灣。pp. 169-330。
Andersen J.R. and T. Lubberstedt. 2003. Functional markers in plants. Trends Plant Sci 8:554-560
Bailey L.H. 1949. Manual of Cultivated Plants. New York, FL: Macmillan Co press. pp. 143
Balding D.J., M. Bishop and C. Cannings. 2003. Handbook of Statistical Genetics, 2nd eds. John Wiley & Sons Ltd, West Sussex
Brunner S, K. Fengler, M. Morgante, S. Tingey and A. Rafalski. 2005. Evolution of DNA sequence non-homologies among maize inbreds. Plant Cell 17:343–360
Buckler E.S., J.M. Thornsberry and S. Kresovich. 2001. Molecular diversity, structure and domestication of grasses. Genet Res 77:213-218
Buckler E.S., B.S. Gaut and M.D. McMullen. 2006. Molecular and functional diversity of maize. Curr Opin Plant Biol 9:172–176
Chourey P.S. and O.E. Nelson. 1976. The enzymatic deficiency conditioned by the shrunken-1 mutation in maize. Biochem Genet 14: 1041-1055
Clark J., M. Robertson and C. Ainsworth. 1991. Nucleotide sequence of a wheat (Triticum aestivum L.) cDNA clone encoding the waxy protein. Plant Mol Biol 16:1099-1101
Dieffenbach C.W., T.M. Lowe and G.S. Dveksler. 1993. General concepts for PCR primer design. Genome Res 3: 30-37
Ding X., B. Wang, Q. Gao, Q. Zhang, G. Yan, K. Duan and J. Huang. 2009. Molecular diversity and differential expression of starch-synthesis genes in developing kernals of three maize inbreds. Plant Cell Rep 28:1487-1495
Don R.H., P.T. Cox and D.J. Wainwright. 1991. ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acid Res 19:4008
Doyle J.J. and L.J. Doyle. 1990. Isolation of plant DNA from fresh tissue. Focus 12:13-15
Dry I., A. Smith, A. Edward, M. Bhattacharyya, P. Dunn and C. Martin. 1992. Characterization of cDNAs encoding two isoforms of granule-bound starch synthase which show differential expression in developing storage organs of pea and potato. Plant J 2:193-202
Fan L, L. Quan, X. Leng, X. Guo, W. Hu, S. Ruan, H. Ma and M. Zeng. 2008. Molecular evidence for post-domestication selection in the waxy gene of Chinese waxy maize. Mol Breeding 22:329-338
FAO. 2008. FAOSTAT. Home Page, http://faostat.fao.org/
Fedoroff N, S. Wessler and M. Shure. 1983. Isolation of the transposable maize controlling elements Ac and Ds. Cell 35:235-242
Feng Z.L., J. Liu, F.L. Fu and W.C. Li. 2008. Molecular mechanism of sweet and waxy in maize. International Journal of Plant Breeding and Genetics 2:93-100
Fisher M.B. and C.D. Boyer. 1983. Immunological characterization of maize starch branching enzymes. Plant Physiol 72: 813-816
Fukunaga K., M. Kawase and K. Kato. 2002. Structural variation in the Waxy gene and differentiation in foxtail millet [Setaria italica (L.) P. Beauv.]: implications for multiple origins of the waxy phenotype. Mol Genet Genomics 268:214-222
Goloubinoff P, S. Pääbo and A.C. Wilson. 1993. Evolution of maize inferred from sequence diversity of an Adh2 gene segment from archaeological specimens PNAS 90:1997-2001
Guan H.P. and P.L. Keeling. 1998. Starch biosynthesis: understanding the functions and interactions of multiple isozymes of starch synthase and branching enzymes. Trends Glycosi Glycotech 10:307-319
Hanashiro I., K. Itoh, Y. Kuratomi, M. Yamazaki, T. Igarashi, J. Matsugasako and Y. Takeda. 2008. Granule-bound starch synthase I is responsible for biosynthesis of extra-long unit chains of amylopectin in rice. Plant Cell Physiol 49:925-933
Hilton H. and B.S. Gaut. 1998. Speciation and domestication in maize and its wild relatives: evidence from the globulin-1 gene. Genetics 150:863-872
Hsieh J, C. Liu and Y. Hsing. 1996. Molecular cloning of a sorghum cDNA encoding the seed waxy protein. Plant Physiol 112:1735
James M.G., K. Denyer and A.M. Myers. 2003. Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:215-222
James M.G., D.S. Robertson and A.M. Myers. 1995. Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell 7:417-429
Jane J.L. and J.F. Chen. 1992. Effect of amylose molecular size and amylopectin branch chain length on paste properties of starch. Cereal Chem 69:60-65
Johnson L.A., C.P. Baumel, C.L. Hardy and P.J. White. 1999. Identifying Valuable Corn Quality Traits for Starch Production. Ames, Iowa State Univ Press
Kimura T., O. Ideta and A. Saito. 2000. Identification of the gene encoding granule-bound starch synthase I in sweet potato (Ipomoea batatas). Plant Biotechnol 17:247-252
Klosgen R.B., A. Gierl, Z. Schwarz-Sommer and H. Saedler. 1986. Molecular analysis of the waxy locus of Zea mays. Mol Gen Genet 203:237-244
Knapp S.J. 1998. Marker-assisted selection as a strategy for increasing the probability of selecting superior genotypes. Crop Sci 38:1164–1174
Knutson C.A. 1985. A simplified colormetric procedure for determination of amylose in maize starches. Cereal Chem 63:89-92
Lalitha S.K. 1999. DNA markers in plant improvement. Biotech Adv 17:143-182
Lee M. 1995. DNA markers and plant breeding programs. Adv Agron 55:265-344
Liu J., T. Rong and W. Li. 2007. Mutation loci and intragenic selection marker of the granule- bound starch synthase gene in waxy maize. Mol Breeding 20:93-102
Ma J., P.J. SanMiguel, J. Dubcovsky, B.A. Shiloff, N. Rostoks, Z. Jiang, C.S. Busso, A. Kleinhofs, K.M. Devos, W. Ramakrishna and J.L. Bennetzen. 2002. Comparative sequence analysis of homologous wx1 regions in barley, maize, pearl millet, rice, sorghum and diploid wheat. Plant, Animal & Microbe Genomes X Conference. Town & Country Convention Center, San Diego. pp. 38
Maddelein M.L., N. Libessart, F. Bellanger, B. Delrue, D’Hulst C, Van den Koornhuyse N., T. FonTiane, J.M. Wieruszeski, A. Decq and S. Ball. 1994. Toward an understanding of the biogenesis of the starch granule.-determination of granule-bound and soluble starch synthase functions in amylopectin synthesis. J Biol Chem 269:25150-25157
Mason-Garner R.J., C.F. Weil and E.A. Kellogg. 1998. Granule-bound starch synthase: structure, function, and phylogenetics utility. Mol Biol Evol 15:1658-1673
Matsushima S. and N. Arakwa. 1985. Determination of starch in tobacco leaf by sugar analyzer method. Coresta 4 :271
Myers A.M., M.K. Morell, M.G. James and S.G. Ball. 2000. Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiology 122:989-997
Nakamura Y. 2002. Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue. Plant Cell Physiol 43:718-725
Nelson O. and D. Pan. 1995. Starch synthesis in maize endosperms. Annu Rev Plant Phys Plant Mol Biol 46:475-496
Ott M. and E. E. Hester. 1965. Gel formation as related to concentration of amylase and degree of starch swelling. Cereal Chem 42: 476-484.
Park Y.J., K. Nemoto, T. Nishikawa, K. Matsushima, M. Minami and M. Kawase. 2010. Waxy strains of three amaranth grains raised by different mutations in the coding region. Mol Breeding 25: 623-635
Ribaut J.M. and D. Hoisington. 1998. Marker-assisted selection: new tools and strategies. Trends Plant Sci 3:236-239
Rohde W., D. Becker and F. Salamini. 1988. Structural analysis of the waxy locus from Hordeum vulgare. Nucl Acids Res 16:7185
Salehuzzaman S., E. Jacobsen and R. Visser. 1993. Isolation and characterization of a cDNA encoding granule-bound starch synthase in cassava (Manihot esculenta Crantz) and its antisense expression in potato. Plant Mol Biol 23:947-962
Shannon J.C. and D.L. Garwood. 1984. Genetics and physiology of starch development. In Starch: Chemistry and Technology, R.L. Whistler, J.N. BeMiller, and E.F. Paschall, eds, Orlando, FL: Academic Press. pp. 25-86
Shin J., S.J. Kwon, J. Lee, H. Min and N.S. Kim. 2006. Genetic diversity of maize kernel starch synthesis genes with SNAPs. Genome 49:1287-1296
Soleimani V.D., B.R. Baum1 and D.A. Johnson. 2003. Efficient validation of single nucleotide polymorphisms in plants by allele-specific PCR, with an example from barley. Plant Mol Biol Rep 21: 281-288
Tenaillon M.I., M.C. Sawkins, A.D. Long, R.L. Gaut, J.F. Doebley and B.S. Gaut. 2001. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). PNAS 98:9161-9166
Tester R.F. and W.R. Morrison . 1990. Swelling and gelatinization of cereal starches. I. Effects of amylopectins, amylose, and lipids. Cereal Chem 67: 551-557.
Tetlow I.J., M.K. Morell, and M.J. Emes. 2004. Recent development in understanding the regulation of starch metabolism in higher plants. J Exp Bot 55:2131-2145
Tian M., Y. Huang, G. Tan, Y. Liu and T. Rong. 2008. Sequence polymorphism of waxy genes in landraces of waxy maize from southwest China. Acta Agronomica Sinica 34:729-736
Tiffin P. and B.S. Gaut. 2001. Sequence diversity in the tetraploid Zea perennis and the closely related diploid Z. diploperennis: insights from four nuclear loci. Genetics 158:401-412
van der Leij F., R. Visser, A. Ponstein, E. Jacobsen and W. Feenstra. 1991. Sequence of the structural gene for granule-bound starch synthase of potato (Solanum tuberosum L.) and evidence for a single point deletion in the amf allele. Mol Gen Genet 228:240-248
Virgil F. 1994. High amylose and waxy maize. In Speciality Corn, Boca Raton, USA, FL: CRC Press. pp. 65-66
Wang Z., Z. Wu, Y. Xing, F. Zheng, X. Guo, W. Zhang and M. Hong. 1990. Nucleotide sequence of rice waxy gene. Nucl Acids Res 18:5898
Wessler S., A. Tarpley, M. Purugganan, M. Spell and R. Okagakit. 1990. Filler DNA is associated with spontaneous deletions in maize. PNAS 87:8731-8735
Whitt R.W., L.M. Wilson, I.T. Maud, S.G. Brando and S.B. Edward 2002. Genetic diversity and selection in the maize starch pathway. PNAS 90:12959-12962
Yadav B.K. and V.K. Jindal 2001. Monitoring milling quality of rice by image analysis. Computers and Electronics in Agriculture 33:19-33
Young A.H. 1984. Starch Chemistry and Technology. Academic Press. New York. pp. 184-247
Zhao Y., H.M. Liu and Y Gu. 2008. Analysis of characteristic of codon usage in waxy gene of Zea mays. Journal of Maize Sciences 16:16-21
Zhou M.Y., and C.E. Gomez-Sanchez. 2000. Universal TA Cloning. Curr Issues Mol Biol 2: 1-7
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45865-
dc.description.abstract為瞭解台灣廣泛栽培之玉米單交種之蠟質基因DNA序列變異與其和澱粉組成相關性狀之關聯性,本研究以2個白玉米、4個糯玉米、4個甜玉米及4個飼料玉米等共14個單交種品種,以及10種子粒透光度具有差異的白玉米種原為材料,探討蠟質基因與澱粉組成性狀之關係。為區分單交種異結合對偶基因之序列,本研究採用延長電泳時間、針對InDel上游區域SNP設計專一性引子及PCR產物之TA-分子選殖等3種方法,由結果顯示以TA-分子選殖之區分能力為最佳。澱粉組成相關性狀調查包括澱粉含量、直鏈性澱粉含量、白度(whiteness)及色度,結果得知甜玉米具有最低的澱粉含量,糯玉米具有最低的直鏈性澱粉含量,而白玉米與飼料玉米均具有高澱粉與直鏈性澱粉含量;而白度與色度分析結果顯示直鏈性澱粉含量越高,則白度越低,而色度分析結果則和果皮顏色具有高度相關。將各品種之蠟質基因DNA序列變異與外表型比較後顯示exon區域有18個變異,而intron區域則有64個變異;就變異比率而言,intron區域約為exon區域的4.5倍,且蠟質基因序列exon 12區域下游具有較大之變異比率;其中推測影響蠟質基因功能之變異位點為位於exon 7之30 bp缺失,以及位於exon 14中4380 bp(G/A)、4387 bp(G/C)與4472 bp(G/A)等共3個SNP,此4個變異皆造成蠟質基因產物之胺基酸缺失或改變。由NCBI搜尋包含玉米、大麥、水稻、小米及高粱等6個單子葉物種,和馬鈴薯、木薯、甘藷及豌豆等4個雙子葉物種之蠟質基因DNA序列後,由於物種間DNA序列變異過大,難以劃分保留區域,經單子葉/雙子葉進行分群後,發現單子葉作物群內變異較小,保留區域片段較大,而雙子葉作物則序列變異較大,保留區域片段較小,而單子葉與雙子葉作物群間則具有3個小片段之保留區,由此結果可知單子葉作物間蠟質基因演化速度較慢。本研究分析玉米單交種蠟質基因DNA序列變異性與澱粉組成相關性之結果,在不同用途之玉米品種改良上具應用潛力。zh_TW
dc.description.abstractIn order to understand the association between DNA sequence variation of waxy genes, and kernel appearance traits related to starch composition of maize hybrids grown in Taiwan, two white corns, four waxy corns, four sweet corns, four feed corns and 10 waxy inbreds with various whiteness were used as materials. In this study, extension of electrophoresis time, designation of SNP-specific primer, and TA-cloning of PCR product were used to identify the alleles of hybrid F1. The result indicates that the TA-cloning is the most efficient way to identify hybrid alleles. To determine the kernel appearance traits, total starch content, amylose content, whiteness and L, a, b value were investigated. It was found that sweet corns had the least starch content and waxy corns had the least amylase content, but the most starch and amylose content were produced in the kernel of white corns and feed corns. Results from whiteness and color scale determination showed that high amylose lines had lower whiteness, and the L, a, b values were highly correlated with the pericarp. After comparing and analyzing the DNA sequences and kernel phenotypes, 18 variation sites in exon region, and 64 variation sites in intron region were observed. The sequence variation proportion is approximately 3.5 times higher in intron than in exon, and the down-stream region of exon 12 has the highest rate of variation. Four functional sequence variations, including 30 bp deletion in exon 7, SNPs on 4380 bp(G/A), 4387 bp(G/C) and 4472 bp(G/A), which caused amino acid substitution or deletion in waxy protein, were identified. The waxy gene sequences from 6 monocot species (including maize, barley, rice, millet and sorghum), and 6 dicot species (including potato, cassava, sweet potato and pea) extracted from NCBI database were aligned and analyzed. Only three conserved segments in waxy DNA sequences were identified because of the highly difference among the surveyed sequences. However, conserved regions in monocot crops are larger than in dicot ones. These results revealed the slower evolution rate in waxy genes of monocot species. The result in this study involved in the relationship between DNA sequence variation of waxy allele and kernel starch composition have application potential for breeding corns with different utilizations.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:47:38Z (GMT). No. of bitstreams: 1
ntu-99-R97621119-1.pdf: 1104232 bytes, checksum: 3742ae8ea9c7365c08a1be2c78f39f38 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目錄
誌謝.................................................................................................................................i
中文摘要........................................................................................................................ii
Abstract.........................................................................................................................iii
目錄................................................................................................................................v
表目錄........................................................................................................................vii
圖目錄........................................................................................................................viii
一、 前言........................................................................................................................1
二、 前人研究................................................................................................................4
三、 材料與方法............................................................................................................8
(一) 玉米蠟質基因序列分析...............................................................................8
1. 玉米蠟質基因之DNA序列搜尋與引子設計......................................8
2. 試驗材料..............................................................................................10
3. DNA萃取與引子擴增..........................................................................12
4. 定序與序列分析..................................................................................12
(二) 區分異結合基因型之兩種對偶基因序列.................................................13
1. 延長電泳時間以區分對偶基因......................................................13
2. 上游SNP區域設計引子.....................................................................13
3. PCR產物之分子選殖..........................................................................16
(三) 玉米子粒澱粉相關性狀之測定與評估......................................................17
1. 玉米子粒澱粉(starch)含量測定..........................................................17
2. 玉米子粒之直鏈性澱粉(amylose)含量測定......................................17
3. 玉米子粒之白度(whiteness)與色度(L, a, b)測定.............................18
(四) 蠟質基因DNA序列變異與子粒性狀之相關性分析................................19
(五) 不同作物蠟質基因之DNA序列比對........................................................19
四、 結果......................................................................................................................20
(一) 玉米蠟質基因之DNA序列搜尋與引子擴增............................................20
(二) 區分異結合蠟質基因型之兩種對偶基因序列..........................................26
(三) 玉米子粒澱粉相關性狀之測定與評估......................................................28
(四) 蠟質基因序列變異與直鏈性澱粉含量及外表型關聯..............................32
(五) 不同作物之蠟質基因序列比對..................................................................38
五、 討論......................................................................................................................42
(一) 玉米蠟質基因DNA序列擴增....................................................................42
1. 蠟質基因專一性引子對擴增情形......................................................42
2. 區分單交種異結合訊號......................................................................43
(二) 玉米子粒澱粉相關性狀之綜合分析..........................................................44
(三) 蠟質基因序列變異與外表型之關聯..........................................................45
(四) 不同作物之蠟質基因序列比對..................................................................48
六、 結論......................................................................................................................49
七、 參考文獻..............................................................................................................50
附表..............................................................................................................................56
附表一..................................................................................................................56
附表二.................................................................................................................60
附表三.................................................................................................................63
dc.language.isozh-TW
dc.subject澱粉zh_TW
dc.subject玉米zh_TW
dc.subject蠟質基因zh_TW
dc.subject單交種zh_TW
dc.subjectstarchen
dc.subjecthybriden
dc.subjectWaxy geneen
dc.subjectmaizeen
dc.title玉米自交系及單交種之蠟質基因序列與子粒品質之相關性研究zh_TW
dc.titleStudies on the Relationship between DNA Sequence Variation in Waxy Gene and Kernel Quality of Inbrids and Hybrids in Maizeen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee盧煌勝,葉茂生,王仕賢,游添榮
dc.subject.keyword玉米,蠟質基因,單交種,澱粉,zh_TW
dc.subject.keywordmaize,Waxy gene,hybrid,starch,en
dc.relation.page65
dc.rights.note有償授權
dc.date.accepted2010-08-04
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved