請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45862
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 彭隆瀚(Lung-Han Peng) | |
dc.contributor.author | Chien-Chih Wu | en |
dc.contributor.author | 吳建志 | zh_TW |
dc.date.accessioned | 2021-06-15T04:47:35Z | - |
dc.date.available | 2015-08-12 | |
dc.date.copyright | 2010-08-12 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-04 | |
dc.identifier.citation | 1 http://www.mitsubishi-tv.com/laser.html.
2 http://www.energystar.gov/. 3 http://www.microvision.com/. 4 http://blog.cnyes.com/My/jasanlin480820/article231783. 5 J. I. Trisnadi, “Speckle contrast reduction in laser projection displays”, Proc. SPIE, vol. 4657, pp. 131-137, 2002. 6 http://www.samsung.com/tw/. 7 http://www.hcphotonics.com/ppxx.htm. 8 Hideki Ishizuki, Takunori Taira, 'Mg-doped congruent LiTaO3 crystal for large-aperture quasi-phase matching device,' Opt. Express, vol. 16, no. 21, pp. 16963-16970, 2008. 9 http://en.wikipedia.org/wiki/Czochralski_process. 10 B.T. Matthias and J. P. Remeika, 'Ferroelectricity in the ilmenite structure,' Phys. Rev., vol. 76, no. 12, pp. 1886-1887, 1949. 11 G. Malovichko, V. Grachev, and O.Schirmer, 'Interrelation of intrinsic and extrinsic defect-congruent, stoichiometric, and regular ordered lithium niobate,' Appl. Phys. B, vol. 68, no.5, pp. 785-793, 1999. 12 Furukaway, Kitamurak, Suzukie, Niwak, 'Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,' J. Cryst. Growth, vol. 197, no. 4, pp. 889-895, 1999. 13 K. Kitamura, Y. Furukawa, S. Takekawa, T. Hatanaka, H. Ito, and V. Gopalan, 'Non-stoichiometric control of LiNbO3 and LiTaO3 in ferroelectric domain engineering for optical device,' Ferroelectrics, vol. 257, no. 1, pp. 235-243, 2001. 14 L. H. Peng, Y. J. Shih, and Y. C. Zhang, 'Restrictive domin motion in polarization switching of lithium niobate,' Appl. Phys. Lett., vol. 81, no.9, pp. 1666-1668, 2002. 15 S. Thaniyavarn, T. Findakly, D. Booher, and J. Moen, 'Domain inversion effects in Ti-LiNbO3 integrated optical devices,' Appl. Phys. Lett., vol. 46, no. 10, pp. 933-935, 1985. 16 M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, 'Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguid,' IEEE J. Quantum Electron, vol. 30, no. 12, pp. 2953-2960, 1994. 17 I. Camlibel, 'Spontaneous polarization measurements in several ferroelectric oxides using a pulsed-field method,' J. Appl. Phys., vol. 40, pp. 1690-1693, 1969. 18 L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, 'Quasi-phase-matched optical parametric oscillatiors in bulk periodically poled LiNbO3,' J. Opt. Soc. Am. B, vol. 12, no. 11, pp. 2102-2116, 1995. 19 K. Mizuuchi and K. Yamamoto, 'Harmonic blue light generation in bulk periodically poled LiTaO3,' Appl. Phys. Lett., vol. 66, no. 22, pp. 2943-2945, 1995. 20 V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, 'Handbook of Nonlinear Optical Crystals, P.8,' Springer, 1999. 21 J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, 'Interactions between Light Waves in a Nonlinear Dielectric,' Phys. Rev., vol. 127, no. 6, pp. 1918-1939, 1962. 22 賴英耀, '準相位匹配鉭酸鋰白光雷射晶片之研製'國立台灣大學光電工程研究所碩士論文, 2009. 23 V. Berger, 'Nonlinear photonic crystals,' Phys. Rev. Lett., vol. 81, no. 19, pp. 4136-4139, 1998. 24 Meyn, J. P. and M. M. Fejer, 'Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalite,' Opt. Lett., vol. 22, no. 16, pp. 1214-1216, 1997. 25 Shih-Yu Tu, A. H. Kung, Z. D. Gao, S. N. Zhu, Sunao Kurimura and Kenji Kitamura, 'Green-pumped high-power optical parametric oscillator based on periodically poled MgO-doped stoichiometric LiTaO3,' Opt. Lett., vol.31, no. 24, pp.3632-3634, 2006. 26 Amirhossein Tehranchi and Raman Kashyap, 'Design of Novel Unapodized and Apodized Step-Chirped Quasi-Phase Matched Gratings for Brordband frequency converters based on second-harmonic generation,' J. Lightwave Technol., vol. 26, pp. 343-349, 2008. 27 R. C. Miller and G. Weinreich, 'Mechanism for the Sidewise Motion of 180 Domain walls in Barium Titantae,' Phys. Rev., vol. 117, no. 6, pp. 1460-1466, 1960. 28 G. D. Miller, 'Periodically poled lithium niobate: modeling, fabrication, and nonlinear-optical performance,' Ph.D. Thesis, Stanford University, Stanford, California, 1998. 29 L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, 'Quasi-phase matched optical parametric oscillators in bulk periodically poled LiNbO3,' J. Opt. Soc. Am. B, vol. 12, no. 11, pp. 2102-2116, 1995. 30 S. Nagano, M. Konishi, T. Shiomi, and M. Minakata, 'Study on formation of small polarization domain inversion for high-efficiency quasi-phase-matched second-harmonic generation device,' Jpn. J. Appl. Phys., vol. 42, no. 7, pp. 4334-4339, 2003. 31 L. H. Peng, Y. P. Tseng, K. L. Lin, Z. X. Hung, C. T. Huang, and A. H. Kung, 'Depolarization field mitigated domain engineering in nickel diffused lithium tentalate,' Appl. Phys. Lett., vol. 92, no. 9, 092903, 2008. 32 李俊瑩, '摻雜氧化鎂鈮酸鋰之準相位匹配綠光倍頻雷射晶片研製,' 國立台灣大學光電工程研究所碩士論文, 2009. 33 P. Janssens, K. Malfait, “Future prospects of high-end laserprojectors,” Proc. SPIE, vol. 7232, pp. 7232-7234, 2009. 34 胡益寧, '短腔光學參量振盪器與藍光產生器之研究,' 國立台灣大學光電工程 研究所碩士論文, 2008. 35 P. Xu, L. N. Zhao, X. J. Lv, J. Lu, Y. Yuan, G. Zhao, S. N. Zhu, 'Compact high-power red-green-blue laser light source generation from a single lithium tantlate with cascaded domain modulation,' Opt. Express, vol. 17, no. 12, pp. 9509-9514, 2009. 36 P. E. Powers, Thomas J. Kulp, S. E.Bisson, 'Continuous tuning of continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,' Opt. Lett., vol. 23, no. 3, pp. 159-161, 1998. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45862 | - |
dc.description.abstract | 本篇論文主要由三大部分構成:準相位匹配與光參振盪器原理的介紹、光參-倍頻藍光雷射晶片之研製,以及光參-倍頻藍光雷射晶片之光學量測與特性分析。
理論部分,介紹非線性頻率轉換與準相位匹配理論,最後導出光參振盪器以及倍頻轉換理論。配合理論計算出鉭酸鋰晶體於不同操作條件下,滿足準相位匹配所需之週期大小。利用本實驗室發展的鎳金屬內擴散配合高壓電致極化反轉製成技術,應用於厚度0.5mm及0.75mm之共融鉭酸鋰基片製作,實驗中設計了光參-啁啾倍頻藍光雷射晶片,週期個別為7.76um與4.96um、4.98um、5um,成功研製出長16mm的高效率寬頻雷光雷射晶片。 光學量測部分,利用奈秒(~5ns)532nm綠光雷射做為泵浦源,設計一共振腔可共振930nm將所研製完成之雷射晶片置入,測量此光參振盪器之出光轉換效率。我們成功以350mW綠光泵浦單片準相位匹配級聯狀雷射晶片,以及雷射共焦腔之設計,實現頻寬約0.8nm,斜線效率16%之465nm藍光。 | zh_TW |
dc.description.abstract | This thesis is composed of three parts:(1) the theory of quasi-phase- matching(QPM) and the QPM optical parametric oscillator(OPO), (2) the fabrication technique of one-dimensional periodically poled congruent grown lithium tantalite(LiTaO3) for cascade OPO-SHG 465nm blue laser chip, (3)the measurement and analysis of OPO-SHG blue light generators.
First of all, I will introduce the mechanism of nonlinear frequency conversion and QPM theory, and it’s application to the optical parametric and second harmonic generation. Using Sellmeier equation, I design the QPM period of periodically poled LiTaO3(PPLT) for the above application. By taking advantage of the nickel-diffusion assisted electric poling process, I fabricated 930nm OPO devices of 5um periodicity on 0.5mm- and 0.75mm-thick congruent LiTaO3 substratee. Using this method, cascaded OPO-SHG PPLT device with a chirp structure in SHG segment, composed of 3 periods separate period of 4.96um, 4.98um, and 5um. With this design, the output of blue light contains high conversion effiency and broad spectrum. Using a 532nm, 5ns pulsewidth laser as the pump source, a 16mm long cascaded OPO-SHG chip in a concave laser cavity of 17mm length is shown to generate a 465nm blue laser. The spectrum is shown to have a 0.8nm bandwidth and an up-conversion effiency of 16% at 350mW green pump. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:47:35Z (GMT). No. of bitstreams: 1 ntu-99-R97941093-1.pdf: 15533050 bytes, checksum: 14440218915b3f6799bb48d022260282 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 第一章 緒論 1
1.1 研究背景 1 1.2 常用非線性晶體介紹 4 1.3 鉭酸鋰晶體介紹 7 1.3.1 基本特性 7 1.3.2 鉭酸鋰的鐵電相 7 1.3.3 鋰空缺模型 9 1.4 極化反轉製程介紹 11 1.4.1 鋰離子外擴散法 11 1.4.2 特殊金屬內擴散法 11 1.4.3 質子交換法 12 1.4.4 高電壓致極化反轉法 12 1.4.5 淺層反轉混合高電壓致極化反轉法 12 1.5 非線性頻率轉換 13 1.5.1 倍頻產生簡介 13 1.5.2 光學參量振盪器簡介 13 1.6 論文內容概述 15 第二章 相位匹配理論 16 2.1 非線性頻率轉換與相位匹配 16 2.1.1 非線性頻率轉換 16 2.2 雙折射相位匹配理論 20 2.3 準相位匹配理論 22 2.3.1 一維空間的準相位匹配 22 2.3.2 二維空間的準相位匹配 25 2.4 光學參量振盪器理論 26 2.4.1 傳統光參理論 26 2.4.2 準相位匹配光參理論 29 2.4.3 光學參量振盪器理論 30 第三章 晶體設計與製程 32 3.1 倍頻晶體週期設計 32 3.2 光參振盪器晶體週期設計 33 3.3 級聯倍頻光參振盪藍光產生器晶體設計 36 3.3.1 寬頻藍光設計 36 3.3.2 寬溫度頻寬操作 41 3.4 高壓電致極化反轉 43 3.4.1 極化反轉模型 45 3.4.2 高電壓波形 46 3.4.3 反轉時間計算 47 3.4.4 液態電極與夾具設計 48 3.4.5 金屬電極定義方式 49 3.5 鎳金屬內擴散機制定義週期性結構 51 3.5.1 定義鎳金屬圖形 53 3.5.2 高溫熱處理 55 3.5.3 高電壓成核時間控制 56 3.5.4 共融鉭酸鋰製程成果 56 3.6 摻雜氧化鎂鉭酸鋰製程研究 58 3.6.1 溫度效應 58 3.6.2 製程結果 59 第四章 光學量測與分析 61 4.1 光學量測架構 61 4.1.1 泵浦雷射 61 4.1.2 系統架構 61 4.2 光參振盪寬頻藍光產生器之量測與分析 63 4.2.1 實驗目的 63 4.2.2 晶片設計 63 4.2.3 實驗結果與分析 66 第五章 結論與未來展望 70 5.1 結論 70 5.2 未來展望 71 參考文獻 72 | |
dc.language.iso | zh-TW | |
dc.title | 準相位匹配鉭酸鋰寬頻藍光雷射晶片之研製 | zh_TW |
dc.title | Broad Bandwidth Blue Laser Based on Quasi-Phase-Matched Periodically-Poled Lithium Tantalate | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王維新(Way-Seen Wang),陳秋麟(Chern-Lin Chen),賴志明(Chih-Ming Lai) | |
dc.subject.keyword | 寬頻,藍光,鉭酸鋰, | zh_TW |
dc.subject.keyword | broad spectrum,blue laser,lithium tantalate, | en |
dc.relation.page | 74 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-04 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 15.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。