Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45852
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor馮哲川
dc.contributor.authorYou-Ren Lanen
dc.contributor.author藍右任zh_TW
dc.date.accessioned2021-06-15T04:47:21Z-
dc.date.available2013-08-12
dc.date.copyright2010-08-12
dc.date.issued2010
dc.date.submitted2010-08-04
dc.identifier.citation[1.1] http://old-www.ansto.gov.au/natfac/asrp4.html
[1.2] http://www.nsrrc.org.tw/english/lightsource.aspx
[1.3] http://www.slac.stanford.edu/gen/edu/educatiorn.html
[1.4] Synchrotron Light to Explore Matter, Copyright MediaSoft, ESRF and Springer-Verlag (2000).
[1.5] J. Schneider, G. Kaindl, C. Kunz, H. Dosch, D. Lour, E. J. Mittemeijer, X-Rays (Synchrotron Radiation), Advanced Analysis of Materials, pp. 238-243.
[2.1] J. J. Rehr, R. C.Albers, Rev. Mod. Phys. 621, 2 (2000).
[2.2] A.Messiah, Wiley, New York (1966).
[2.3] D. C. Koningsberger, and R. Prins, “X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES”, Wiley, New York, 126 (1988).
[2.4] J. Prins, North Holland, Amsterdam, 12 (1965).
[2.5] F. Lytle, J. Synchrotron Radiat. 6, 123 (1999).
[2.6] A. L. Ankudinov, J. J. Rehr, J. J. Low, S. R. Bare, Top. Catal. 18, 3 (2002).
[2.7] L.A. Grunes, Phys. Rev. B, 27,7111 (1983).
[2.8] J. E. Muller and J. W. Wilkins, Phys. Rev. B, 29, 4331 (1984).
[2.9] Christian Brouder, J. Phys. Condens. Matter. 2, 701 (1990).
[2.10] V. Gehanno, C. Revenant-Brizard, A. Marty, and B. Gilles, J. Appl. Phys. 84, 2316 (1998).
[2.11] R. A. Rosenberg, P. J. Love, and Victor Rehn, Phys. Rev. B, 33, 4034 (1986).
[2.12] H. Hertz, Ann. Physik, 31, 983 (1887).
[2.13] A. Einstein, Ann. Physik 17,132 (1905); 1921 Nobel Prize in Physics.
[2.14] K. Siegbahn, et al.,Nova Acta Regiae Soc.Sci., Ser. IV, Vol. 20 (1967); 1981 Nobel Prize in Physics.
[2.15] John C. Vickerman, ed., “Surface Analysis – The Principle Techniques”, New York: John Wiley & Sons (1997).
[2.16] K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G. Johansson, T. Bergmark, S. E. Karlsson. I. Lindgren, and B. Linberg, ESCA: atomic, molecular and solid state structure studied by means of electron spectroscopy, Nova Acta Regiae Societatis Scientiarum Upsaliensis, Ser. IV, 20, 5-282 (1967).
[2.17] B. K. Agarwal, “X-Ray Spectroscopy”, Springer-Verlag (1979).
[2.18] 潘扶民, “化學分析電子儀器分析”, 材料分析, Ch.13, 中國材料學會.
[2.19] Chastain J., and King R. C. Jr., “Handbook of X-ray Photoelectron Spectroscopy”, Physical Electronics Inc., p.25 (1995).
[2.20] John F. Moulder, William F. Stickle, Peter E. Sobol, and Kenneth D. Bomben, “Handbook of X-ray photoelectron spectroscopy”, published by physical electronics division of Perkin-Elmer Corporation, Eden Prairie, Minnesota 55344, USA (1992).
[2.21] C. D. Wagner et al., Surf. Interface Anal. 3, 211 (1981).
[3.1] Alexander Müller, Marko Stölzel, Christof Dietrich, Gabriele Benndorf, Michael Lorenz, and Marius Grundmann, J. Appl. Phys. 107, 013704 (2010).
[3.2] H. Zhu, C. X. Shan, B. H. Li, Z. Z. Zhang, J. Y. Zhang, B. Yao, D. Z. Shen, and X. W. Fan, J. Appl. Phys. 105, 103508 (2009).
[3.3] Kenji Yamamoto, Takako Tsuboi, Toshiya Ohashi, Takehiko Tawara, Hideki Gotoh, Atsushi Nakamura, and Jiro Temmyo, J. Cryst. Growth, 312, 1703 (2010).
[3.4] Q. Wan, C. L. Lin, X. B. Yu, and T. H. Wang, Appl. Phys. Lett. 84, 124 (2004).
[3.5] D. C. Look, B. Claflin, Ya. I. Alivov, and S. J. Park, Phys. Status Solid A, 201, 10 (2003).
[3.6] W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, S. M. Liu, R. Zhang, Y. Shi, Y. D. Zheng, Y. Hang and C. L. Zhang, Appl. Phys. Lett. 88, 092101 (2006).
[3.7] Wei Wei, Chunming Jin, Jagdish Narayan, Roger J. Narayan, Solid State Commun. 149, 1670 (2009).
[3.8] K. Maejima, H. Shibata, H. Tampo, K. Matsubara, and S. Niki, Thin Solid Films, 518, 2949 (2010).
[3.9] J. B. You, X. W. Zhang, S. G. Zhang, H. R. Tan, J. Ying, Z. G. Yin, Q. S. Zhu, and Paul K. Chu, J. Appl. Phys. 107, 083701 (2010).
[3.10] A. K. Sharma, J. Narayan, J. F. Muth, C. W. Teng, C. Jin, A. Kvit, R. M. Kolbas and O. W. Holland, Appl. Phys. Lett. 75, 3327 (1999).
[3.11] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma and M. Kawasaki, Nat. Mater. 4, 42 (2005).
[3.12] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi , H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda and Y. Segawa, Appl. Phys. Lett. 72, 2466 (1998).
[3.13] W. I. Park, G. C. Yi and H. M. Jang, Appl. Phys. Lett. 79, 2022 (2001).
[3.14] R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr. Theor. Gen. Crystallogr. 32, 751 (1976).
[3.15] D. C. Look and B. Claflin, Phys. Status Solidi B, 241, 624 (2004).
[3.16] Y. S. Wang, J. Cryst. Growth, 304, 393 (2007).
[3.17] H. P. Zhou, W. Z. Shen, N. B. Chen and H. Z. Wu, Appl. Phys. Lett. 85, 3723 (2004).
[3.18] Z. Vashaei, T. Minegishi, H. Suzuki, T. Hanada, M. W. Cho, T. Yab and A. Setiawan, J. Appl. Phys. 98, 054911 (2005).
[3.19] Y. W. Heo, Y. W. Kwon, Y. Li, S. J. Pearton and D. P. Norton, Appl. Phys. Lett. 84, 3474 (2004).
[3.20] X. Zhang, X. M. Li, T. L. Chen, C. Y. Zhang, and W. D. Yu, Appl. Phys. Lett. 87, 092101 (2005).
[3.21] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda and Y. Segawa, Appl. Phys. Lett. 72, 2466 (1998).
[3.22] W. K. Wang, D. S. Wuu, S. H. Lin, S. Y. Huang, P. Han and R. H. Horng, J. J. Appl. Phys. 45, 3430 (2006).
[3.23] M. Newville, P. Livins, Y. Yacoby, J. J. Rehr, and E. A. Stern, Phys. Rev. B, 47, 14126 (1993).
[3.24] A. L. Ankudinov, B. Ravel, J. J. Rehr, S. D. Conradson, Phys. Rev. B, 58, 7565 (1998).
[3.25] J. Mustre de Leon, J. J. Rehr, S. I. Zabinsky, and R. C. Albers, Phys. Rev. B, 44, 4146 (1991).
[3.26] J. J. Rehr, J. Mustre de Leon, S. I. Zabinsky, and R. C. Albers, J. Am. Chem. Soc. 113, 5135 (1991).
[3.27] J. J. Rehr, S. I. Zabinsky, and R. C. Albers, Phys. Rev. Lett. 69, 3397 (1992).
[3.28] Young-Il Kim, Katharine Page, and Ram Seshadri, Appl. Phys. Lett. 90, 101904 (2007).
[3.29] C. Y. Liu, H. Y. Xu, L. Wang, X. H. Li, and Y. C. Liu, J. Appl. Phys. 106, 073518 (2009).
[3.30] J. C. A. Huang, H. S. Hsu, J. H. Sun, S. L. Chiu, C. H. Lee, Y. F. Liao, and H. Chou, J. Appl. Phys. 103, 07D128 (2008).
[3.31] J. W. Chiou, H. M. Tsai, C. W. Pao, K. P. Krishna Kumar, S. C. Ray, F. Z. Chien, W. F. Pong, M.-H. Tsai, C.-H. Chen, H.-J. Lin, J. J. Wu, M.-H. Yang, S. C. Liu, H. H. Chiang, and C. W. Chen, Appl. Phys. Lett. 89, 043121 (2006).
[3.32] J. W. Chiou, H. M. Tsai, C. W. Pao, F. Z. Chien, W. F. Pong, C. W. Chen, M.-H. Tsai, J. J. Wu, C. H. Ko, H. H. Chiang, H.-J. Lin, J. F. Lee, and J.-H. Guo, J. Appl. Phys. 104, 013709 (2008).
[3.33] Table of Periodic Properties of the Elements (Sargent-Welch Scientific, Skokie, IL, 1980).
[3.34] C. Thiandoume, A. Lusson, P. Galtier, V. Sallet, J. Cryst. Growth, 312, 1529 (2010).
[3.35] J. D. Ye, K. W. Teoh, X. W. Sun, G. Q. Lo, and D. L. Kwong, H. Zhao, S. L. Gu, R. Zhang, and Y. D. Zheng, S. A. Oh, X. H. Zhang, and S. Tripathy, Appl. Phys. Lett. 91, 091901 (2007).
[3.36] K. T. Ramakrishna Reddy, P. Prathap, N. Revathi, A. S. N. Reddy, R. W. Miles, Thin Solid Films, 518, 1275 (2009).
[3.37] J. F. Kong, W. Z. Shen, Y. W. Zhang, C. Yang, and X. M. Li, Appl. Phys. Lett. 92, 191910 (2008).
[4.1] Christopher L. Platt, Ning Li, Kejing Li, and Tonya M. Klein, Thin Solid Films, 518, 4081 (2010).
[4.2] L. Q. Zhu, N.Barrett, P. Jégou, F. Martin, C. Leroux, E. Martinez, H. Grampeix, O. Renault, and A. Chabli, J. Appl. Phys. 105, 024102 (2009).
[4.3] Luschitz, B. Siepchen, and J. Schaffner, Thin Solid Films, 517, 2125 (2009).
[4.4] Shingo Kuge and Haruhiko Yoshida, J. Appl. Phys. 105, 093708 (2009).
[4.5] M. L. Green, A. J. Allen, J. L. Jordan-Sweet, and J. Ilavsky, J. Appl. Phys. 105, 103522 (2009).
[4.6] Michael Shandalov and Paul C. McIntyre, J. Appl. Phys. 106, 084322 (2009).
[4.7] Ran Jiang and Zifeng Li, Semicond. Sci. Technol. 24, 065006 (2009).
[4.8] Jeong Chan Kim, Jung Shik Heo, Yong Seok Cho, and Sang Heup Moon, Thin Solid Films, 517, 5695 (2009).
[4.9] Justin C. Hackley and Theodosia Gougousi, Thin Solid Films, 517, 6576 (2009).
[4.10] L. Wang, Paul K. Chu, Andre Anders, and Nathan W. Cheung, J. Appl. Phys. 104, 054117 (2008).
[4.11] K. Cherkaoui, S. Monaghan, M. A. Negara, M. Modreanu, P. K. Hurley, D. O’Connell, S. McDonnell, G. Hughes, S. Wright, R. C. Barklie, P. Bailey, and T. C. Q. Noakes, J. Appl. Phys. 104, 064113 (2008).
[4.12] Massimo Tallarida, Konstantin Karavaev, and Dieter Schmeisser, J. Appl. Phys. 104, 064116 (2008).
[4.13] S.J. Chang, W.C. Lee, J. Hwang, M. Hong, and J. Kwo, Thin Solid Films, 516, 948 (2008).
[4.14] Jordi Sancho-Parramon, Mircea Modreanu, Salvador Bosch, and Michel Stchakovsky, Thin Solid Films, 516, 7990 (2008).
[4.15] G. D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys. 89, 5243 (2001).
[4.16] E. P. Gusev, E. Cartier, D.A. Buchanan, M. Gribelyuk, M. Copel H. Okorn-Schmidt, and C. D’Emic, Microelectron. Eng. 59, 341 (2001).
[4.17] X. Zhao and D. Vanderbilt, Phys. Rev. B, 65, 075105 (2002).
[4.18] K. B. Chung, G. Lucovsky, W. J. Lee, M.-H. Cho, and Hyeongtag Jeon, J. Appl. Phys. 94, 042907 (2009).
[4.19] M.-H. Cho, D. W. Moon, S. A. Park, Y. K. Kim, K. Jeong, S. K. Kang , D.-H. Ko, S. J. Doh, J. H. Lee, and N. I. Lee , J. Appl. Phys. 84, 25 (2004).
[4.20] Yusuke Oniki, Yoshitaka Iwazaki, Masahiko Hasumi, Tomo Ueno, and Koichi Kuroiwa, Japanese J. Appl. Phys. 48, 05DA01 (2009).
[4.21] Yu. Yu. Lebedinskii, A. Zenkevich, E. P. Gusev, and M. Gribelyuk, J. Appl. Phys. 86, 191904 (2005).
[4.22] J. Morais, L. Miotti, K. P. Bastos, S. R. Teixeira, I. J. R. Baumvol, A. L. P. Rotondaro, J. J. Chambers, M. R. Visokay, L. Colombo, and M. C. Martins Alves, J. Appl. Phys. 86, 212906 (2005).
[4.23] Kazuhiko Yamamoto, Shigenori Hayashi, and Masaaki Niwa, J. Appl. Phys. 83, 11 (2003).
[4.24] The latest version of this program can be found at <http://www.genplot.com>.
[4.25] L. Soriano, M. Abbate, J. C. Fuggle, M. A. Jimenez, J. M. Sanz, C. Mythen, and H. A. Padmore, Solid State Commun. 87, 699 (1993).
[4.26] M.-H. Cho, K. B. Chung, C. N. Whang, D.-H. Ko, J. H. Lee and N. I. Lee, J. Appl. Phys. 88, 202902 (2006).
[4.27] S. Kremmer, H. Wurmbauer, and C. Teichert, G. Tallarida, S. Spiga, C. Wiemer, and M. Fanciulli, J. Appl. Phys. 97, 074315 (2005).
[4.28] H. Takahashi, S. Toyoda, J. Okabayashi, H. Kumigashira, M. Oshima, Y. Sugita, G. L. Liu, Z. Liu, and K. Usuda, J. Appl. Phys. 87, 012903 (2005).
[4.29] S. Dhar, M. S. Ramachandra Rao, S. B. Ogale, Darshan C. Kundaliya, S. R. Shinde, T. Venkatesan, S. J. Welz , R. Erni, and N. D. Browning, J. Appl. Phys. 87, 241504 (2005).
[4.30] Ran Jiang and Zifeng Li, Semicond. Sci. Technol. 24, 065006 (2009).
[5.1] J. Wagner, C. H. Mann, M. Rattunde, and G. Weimann, Appl. Phys. A: Mater. Sci. Process. 78, 505 (2004).
[5.2] M. Yin, A. Krier, S. Krier, R. Jones, and P. Carrington, Proc. SPIE, 6399, 63990C (2006).
[5.3] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).
[5.4] G. Tsai, D. L. Wang, and H. H. Lin, J. Appl. Phys. 104, 023535 (2008).
[5.5] N. Kobayshi, Y. Horikoshi, Jpn. J. Appl. Phys. 19, L641 (1980).
[5.6] B. Lane, D. Wu, A. Rybaltowski, H. Yi, J. Diaz, M. Razeghi, Appl. Phys. Lett. 70, 443 (1997).
[5.7] A. Joullie' ,E. M. Skouri, M. Garcia, P. Grech, A. Wilk, P. Christol, and A. N. Baranov, Appl. Phys. Lett. 76, 2499 (2000).
[5.8] A. Krier, Y. Mao, IEE Proc.-Optoelectron. 144, 355 (1997).
[5.9] T. Fukui and Y. Horikoshi, Jpn. J. Appl. Phys. 20, 587 (1981).
[5.10] E. H. Reihlen, M. J. Jou, Z. M. Fang, and G. B. Stringfellow, J. Appl.Phys. 68, 4604 (1990).
[5.11] R. M. Biefeld, K. C. Baucom, S. R. Kurtz, and D. M. Follstaedt, J. Cryst.Growth, 133, 38 (1993).
[5.12] G. Tsai, D. L. Wang, C. E. Wu, C. J. Wu, Y. T. Lin, and H. H. Lin, J. Cryst.Growth 134, 301 (2007).
[5.13] A. L. Ankudinov, B. Ravel, J. J. Rehr, S. D. Conradson, Phys. Rev. B, 58, 7565 (1998).
[5.14] J. C. Woolley, B. A. Smith, Proc. phys. Soc. 72, 867 (1958).
[5.15] J. C. Woicik, J. A. Gupta, S. P. Watkins, and E. D. Crozier, Appl. Phys. Lett. 73, 9 (1998).
[5.16] O. Pag&egrave;s, A. Chafi, D. Fristot, and A. V. Postnikov, Phys. Rev. B, 73, 165206 (2006).
[5.17] Alan H. Cowley, Richard A. Jones, Christine M. Nunn, and Donald L. Westmoreland, Chem. Mater. 2, 221 (1990).
[5.18] E. G. Zaitseva, S. V. Medvedev, and L. A. Aslanov, Zh. Strukt. Khim. 31, 1, 110 (1990).
[5.19] S. S. Kizhayev, N. V. Zotova, S. S. Molchanov, B. V. Pushnyi, and Yu. P. Yakovlev, J. Cryst. Growth, 248, 296 (2003).
[5.20] K. Alberi, J. Wu, W. Walukiewicz, K. M. Yu, O. D. Dubon, S. P. Watkins, C. X. Wang, X. Liu, Y.-J. Cho, and J. Furdyna, Phys. Rev. B, 75, 045203 (2007).
[5.21] S. A. Cripps, T. J. C. Hosea, A. Krier, V. Smirnov, P. J. Batty, Q. D. Zhuang, H. H. Lin, P. W. Liu, and G. Tsai, Appl. Phys. Lett. 90, 172106 (2007).
[6.1] S. Cornelius, M. Vinnichenko, N. Shevchenko, A. Rogozin, A. Kolitsch, W. M&ouml;ller, Appl. Phys. Lett. 94, 042103 (2009).
[6.2] Ho Won Jang, Chang Min Jeon, Ki Hong Kim, Jong Kyu Kim, Sung-Bum Bae, Jung-Hee Lee, Jae Wu Choi, and Jong-Lam Lee, Appl. Phys. Lett. 81, 1249 (2002).
[6.3] K. B. Lee, P. J. Parbrook, T. Wang, F. Ranalli, T. Martin, R. S. Balmer, and D. J. Wallis, J. Appl. Phys. 101, 053513 (2007).
[6.4] T. Egawa, H. Ishikawa, M. Umeno, and T. Jimbo, Appl. Phys. Lett. 76, 121 (2000).
[6.5] M. T. Elm, T. Henning, P. J. Klar, B. Szyszka, Appl. Phys. Lett. 93, 232101 (2008).
[6.6] S. S. Hullavarad, N. V. Hullavarad, D. E. Pugel, S. Dhar, T. Venkatesan, R. D. Vispute, Optical Materials, 30, 993 (2008).
[6.7] S. Nakamura, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys. Part 2 30, L1708 (1991).
[6.8] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, T. H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, Appl. Phys. Lett. 72, 2014 (1998).
[6.9] T. Mukai, H. Narimatsu, and S. Nakamura, J. J. Appl. Phys. Part 2 37, L479 (1998).
[6.10] M. Khan, J. N. Kusnia, D. T. Olson, G. M. Van Hove, M. Blasingane, and L. F. Reitz, Appl. Phys. Lett. 60, 2917 (1992).
[6.11] D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu, and M. Razeghi, Appl. Phys. Lett. 68, 2100 (1996).
[6.12] K. Ito, K. Hiramatsu, H. Amano, and I. Akasaki, J. Cryst. Growth, 104, 533 (1989).
[6.13] S. J. Chung, M. Senthil Kumar, H. J. Lee, and E.-K. Suh, J. Appl. Phys. 95, 7, 3565 (2004).
[6.14] W. F. Yang, Z. G. Liu, D. L. Peng, F. Zhang, H. L. Huang, Y. N. Xie, Z. Y. Wu, Appl. Surface Science, 255, 5669 (2009).
[6.15] Andrew P. Grosvenor, Farshid Ramezanipour, Shahab Derakhshan, Christian Maunders, Gianluigi A. Botton and John E. Greedan, J. Mater. Chem. 19, 9213 (2009).
[6.16] Satoru Yoshioka, Fumiyasu Oba, Rong Huang, and Isao Tanaka, J. Appl. Phys. 103, 014309 (2008).
[6.17] X. Gu, M. A. Reshchikov, A. Teke, D. Johnstone, H. Morkoc, B. Nemeth, and J. Nause, Appl. Phys. Lett. 84, 2268 (2004).
[6.18] N. Yamauchi, T. Shirai, T. Yoshihara, Y. Hayasaki, T. Ueda, T. Matsushima, K. Wasa, I. Kanno, and H. Kotera, Appl. Phys. Lett. 94, 172903 (2009).
[6.19] V. Porokhonskyy, Li Jin, and D. Damjanovic, Appl. Phys. Lett. 94, 212906 (2009).
[6.20] M. W. Cole, W. D. Nothwang, C. Hubbard, E. Ngo, and M. Ervin, J. Appl. Phys. 93, 9218 (2003).
[6.21] D. Kim, Y. Choi, M. G. Allen, J. Stevenson Kenney, and D. Kiesling, IEEE Trans. Microwave Theory Tech. 50, 2903 (2002).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45852-
dc.description.abstract同步加速器光源是二十一尖端科學研究不可或缺的實驗工具,廣泛應用在材料、生物、醫藥、物理、化學、化工、物質、能源、電子、奈米元件等基礎與應用科學研究。光學量測對於分析半導體材料具有很重要的地位,尤其是對於材料的結構、特性,甚至是物理機制。而近幾年的半導體材料,由於它的材料特性非常適合應用在現今生活的電器設備用品上,譬如:發光二極體、積體電路原件…等,所以被廣泛而且深入的研究,縱使已經有不少上市產品應用半導體為材料,但是仍然有許多的問題與困難需要解答與突破,因此,我們將針對目前的許多挑戰做研究。
我們會利用各種不同的光學量測系統得到更多的材料特性,進而得出相互驗證的結果。在第三章,我們利用不同的分析技術來研究有機金屬化學氣相沈積磊晶法生長的氧化鋅鎂的結構特性以及電子組態。我們利用X光光電子能譜術以及同步輻射X光吸收光源精細結構頻譜圖來分析不同鎂含量的氧化鋅鎂,接著再利用X光繞射光譜以及拉曼光譜來佐證我的分析結果。在第四章,我們利用X光光電子能譜術,拉塞福背向散射,同步輻射X光吸收光源精細結構頻譜圖以及掠角X光繞射光譜分析不同生長條件的奈米材料二氧化鉿薄膜生長在矽基板上面的結構以及光學特性。我們在第五章中把重點放在銻磷化銦以氣態源分子束磊晶技術生長在砷化銦基板上,我們利用X光光電子能譜術以及同步輻射X光吸收光源精細結構頻譜圖來分析銻磷化銦的特性。
zh_TW
dc.description.abstractDuring the past decade, synchrotron light sources have become indispensable tools for advanced scientific research. Synchrotron light is used widely in basic and applied research throughout the fields of materials science, biology, medicine, physics, chemistry, chemical engineering, geology, energy, electronics, and nanotechnology. A series of optical characterization techniques, including X-ray absorption spectroscopy (XAS), X-ray Photoelectron Spectroscopy (XPS), Raman scattering, and X-ray diffraction (XRD) were employed to analyze II-VI and III-V compound semiconductors.
In chapter 3, we study the structural and electrical properties of MgxZn1-xO materials with wurtzite structure grown on sapphire substrate by Metal-Organic Chemical Vapor Deposition (MOCVD). MgxZn1-xO samples with different composition ratios were analyzed by various characterization techniques, including XPS, Synchrotron Radiation (SR) X-ray absorption fine structure (XAFS), XRD, and Raman scattering.
We investigate on the structural and optical characteristics of nanometer scale HfO2 thin film materials epitaxied on Si substrates with different growth condition, by XPS, Rutherford back-scattering (RBS), SR-XAFS, and grazing incidence x-ray diffraction (GIXRD) in chapter 4.
In chapter 5, it is focused on the InAsPSb thick epitaxial films grown on GaAs substrate by gas source molecular beam epitaxy (GSMBE). InAsPSb samples with different growth condition were investigated by XPS and SR-XAFS.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:47:21Z (GMT). No. of bitstreams: 1
ntu-99-R97941090-1.pdf: 3451259 bytes, checksum: 45ab15ba1afe78d7133b505c096726b9 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents致謝................................................................................................................................i
摘要...............................................................................................................................ii
Abstract...........................................................................................................................iii
Content.............................................................................................................................v
Lists of Figures................................................................................................................ix
Lists of Tables..............................................................................................................xvii
Chapter 1 Introduction
1.1. What is Synchrotron Radiation?................................................................1
1.2. History of X-ray Sources..........................................................................2
1.3. Generation of Synchrotron Radiation Sources.........................................3
1.4. The Properties of Synchrotron Radiation................................................4
1.5. How is Synchrotron Light Produced?.......................................................5
1.6. Publication list..............................................7
References.................................................................................................................8
Chapter 2 Theoretical Background and Experimental Details
2.1 X-Ray Absorption Fine-Structure (XAFS)........................................9
2.1.1 X-ray absorption spectroscopy: principle and analysis...............9
2.1.2 X-ray Absorption Near Edge Structure (XANES)......................15
2.1.3 Extended X-ray Absorption Fine Structure (EXAFS)..............17
2.1.4 Polarized-dependence X-ray absorption fine structure.............21
2.2 X-ray Photoelectron Spectrometry (XPS)..............................................22
2.2.1 Introduction....................................................................................22
2.2.2 Spectral Features of XPS: Chemical Shifts.................................24
2.2.3 Spectral Features of XPS Doublet and Multiplet Splitting........25
2.2.4 The Application of XPS: Analysis of the Composition…........26
References...............................................................................................................28
Chapter 3 Investigations of MgZnO thin film materials on sapphire
3.1 Introduction...............................................................................................30
3.2 Experiment.................................................................................................32
3.3 Result and Discussion................................................................................35
3.3.1 X-ray Photoelectron Spectrometry (XPS).................................35
3.3.2 X-Ray Absorption Fine-Structure (XAFS).................................42
a. Extended X-ray Absorption Fine Structure (EXAFS)............42
b. X-ray Absorption Near Edge Structure (XANES).................48
3.3.3 X-ray Diffraction XRD(XRD)......................................................54
3.3.4 Raman scattering...........................................................................55
3.4 Conclusion..................................................................................................57
References..............................................................................................................59
Chapter 4 Investigations of HfO2 thin film on Si-based
4.1 Introduction...............................................................................................63
4.2 Experiment.................................................................................................64
4.3 Result and Discussion..........................................................................66
4.3.1 X-ray Photoelectron Spectrometry (XPS).................................66
4.3.2 Rutherford backscattering (RBS)................................................71
4.3.3 X-ray Absorption Near Edge Structure (XANES).................74
4.3.4 Grazing Incidence X-ray Diffraction (GIXRD)..........................78
4.3.5 High-resolution Transmission Electron Microscopy (HR-TEM).....................................................................................84
4.4 Conclusion........................................................................................85
References...............................................................................................................86
Chapter 5 Investigations of InAsPSb epitaxial materials on GaAs from molecular beam epitaxy
5.1 Introduction..............................................................................................89
5.2 Experiment.................................................................................................90
5.3 Result and Discussion................................................................................92
5.3.1 X-ray Photoelectron Spectrometry (XPS).................................92
5.3.2 Extended X-ray Absorption Fine Structure (EXAFS)...........98
5.4 Summary..................................................................................................104
References.............................................................................................................105
Chapter 6 Investigation on other materials
6.1 AlZnO...........................................................107
6.1.1 Introduction...................................................107
6.1.2 Experiment.....................................................108
6.1.3 Result and Discussion............................................109
a. Near Edge X-ray Absorption Spectroscopy (NEXAFS).........109
b. Raman scattering..................................................112
6.1.4 Summary........................................................115
6.2 InGaN/GaN/ZnO....................................................116
6.2.1 Sample information........................................................116
6.2.2 Result.....................................................116
6.3 Tb:SiO2......................................................118
6.3.1 Sample information......................................................118
6.3.2 Result..............................................................119
6.4 PbZrxTi1-xO3.................................................................................................127
6.4.1 Introduction...................................................127
6.4.2 Sample information............................................128
6.4.3 Result..........................................................128
a. Extended X-ray Absorption Fine Structure (EXAFS)............128
b. High-resolution Transmission Electron Microscopy (HR-TEM)......................................................................................129
6.5 Ba1-xSrxTiO3..................................................................................................130
6.5.1 Introduction............................................................130
6.5.2 Sample information............................................................130
6.5.3 Result..........................................................130
a. Extended X-ray Absorption Fine Structure (EXAFS)...........130
b. High-resolution Transmission Electron Microscopy (HR-TEM)......................................................................................131
References.............................................................................................................133
dc.language.isoen
dc.subject同步加速器輻射光源zh_TW
dc.subject銻磷砷化銦zh_TW
dc.subject二氧化鉿zh_TW
dc.subject氧化鋅鎂zh_TW
dc.subjectX光光電子能譜術zh_TW
dc.subjectX光吸收光源精細結構頻譜圖zh_TW
dc.subjectSynchrotron Radiation (SR)en
dc.subjectX-ray absorption fine structure (XAFS)en
dc.subjectX-ray absorption spectroscopy (XAS)en
dc.subjectX-ray Photoelectron Spectroscopy (XPS)en
dc.subjectMgZnOen
dc.subjectHfO2en
dc.subjectInAsPSben
dc.title同步輻射X光吸收光譜以及X光光電子能譜術對氧化鋅鎂,二氧化鉿及銻磷砷化銦薄膜材料的特性研究zh_TW
dc.titleSynchrotron Radiation X-ray Absorption and X-ray Photoelectron Spectroscopy Analysis of MgZnO, HfO2, and InAsPSb epitaxial materialsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林浩雄,李坤彥
dc.subject.keyword同步加速器輻射光源,X光吸收光源精細結構頻譜圖,X光光電子能譜術,氧化鋅鎂,二氧化鉿,銻磷砷化銦,zh_TW
dc.subject.keywordSynchrotron Radiation (SR),X-ray absorption fine structure (XAFS),X-ray absorption spectroscopy (XAS),X-ray Photoelectron Spectroscopy (XPS),MgZnO,HfO2,InAsPSb,en
dc.relation.page135
dc.rights.note有償授權
dc.date.accepted2010-08-04
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
3.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved