Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4584
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭彥甫(Yan-Fu Kuo)
dc.contributor.authorTzu-Han Chouen
dc.contributor.author周子涵zh_TW
dc.date.accessioned2021-05-14T17:43:43Z-
dc.date.available2020-08-10
dc.date.available2021-05-14T17:43:43Z-
dc.date.copyright2015-08-10
dc.date.issued2015
dc.date.submitted2015-08-05
dc.identifier.citation1. Hubel, D.H. and T.N. Wiesel, Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of physiology, 1962. 160(1): p. 106.
2. Chunhui, Z., et al. Automatic Real-Time Barcode Localization in Complex Scenes. in IEEE International Conference on Image Processing. 2006. p. 497-500.
3. Zamberletti, A., I. Gallo, and S. Albertini. Robust Angle Invariant 1D Barcode Detection. in IAPR Asian Conference on Pattern Recognition. 2013. p. 160-164.
4. Wu, X.-S., L.-Z. Qiao, and J. Deng. A New Method for Bar Code Localization and Recognition. in International Congress on Image and Signal Processing. 2009. p. 1-6.
5. Lin, D.-T., M.-C. Lin, and K.-Y. Huang, Real-time automatic recognition of omnidirectional multiple barcodes and DSP implementation. Machine Vision and Applications, 2011. 22(2): p. 409-419.
6. Chai, D. and F. Hock. Locating and Decoding EAN-13 Barcodes from Images Captured by Digital Cameras. in International Conference on Information Communications and Signal Processing. 2005. p. 1595-1599.
7. Dong, H., et al. 2D barcode image binarization based on wavelet analysis and Otsu's method. in International Conference on Computer Application and System Modeling. 2010. Taiyuan: IEEE. p. 30-33.
8. Wei, X. and S. McCloskey. 2D Barcode localization and motion deblurring using a flutter shutter camera. in IEEE Workshop on Applications of Computer Vision. 2011. p. 159-165.
9. Ohbuchi, E., H. Hanaizumi, and L.A. Hock. Barcode readers using the camera device in mobile phones. in International Conference on Cyberworlds. 2004. p. 260-265.
10. Lin, J.-A. and C.-S. Fuh, 2D Barcode Image Decoding. Mathematical Problems in Engineering, 2013. 2013: p. 10.
11. Leong, L.K. and W. Yue, Extraction of 2D barcode using keypoint selection and line detection, in Advances in Multimedia Information Processing. 2009, Springer. p. 826-835.
12. Jain, A.K. and Y. Chen. Bar code localization using texture analysis. in Proceedings of the Second International Conference on Document Analysis and Recognition. 1993. p. 41-44.
13. Jain, A.K. and F. Farrokhnia. Unsupervised texture segmentation using Gabor filters. in IEEE International Conference on Systems, Man, and Cybernetics. 1990. p. 14-19.
14. Arivazhagan, S., L. Ganesan, and S.P. Priyal, Texture classification using Gabor wavelets based rotation invariant features. Pattern Recognition Letters, 2006. 27(16): p. 1976-1982.
15. Wang, M., L.-N. Li, and Z.-X. Yang. Gabor filtering-based scale and rotation invariance feature for 2D barcode region detection. in International Conference on Computer Application and System Modeling. 2010. IEEE. p. V5-34-V5-37.
16. Tivive, F.H.C. and A. Bouzerdoum. Texture Classification using Convolutional Neural Networks. in IEEE Region 10 Conference. 2006. p. 1-4.
17. LeCun, Y., Generalization and network design strategies. Connections in Perspective. North-Holland, Amsterdam, 1989: p. 143-55.
18. Le Cun, B.B., et al. Handwritten digit recognition with a back-propagation network. in Advances in neural information processing systems. 1990. Citeseer.
19. LeCun, Y., et al., Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998. 86(11): p. 2278-2324.
20. Lawrence, S., et al., Face recognition: A convolutional neural-network approach. IEEE Transactions on Neural Networks, 1997. 8(1): p. 98-113.
21. Garcia, C. and M. Delakis, Convolutional face finder: A neural architecture for fast and robust face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004. 26(11): p. 1408-1423.
22. Chen, Y.-N., et al. The application of a convolution neural network on face and license plate detection. in International Conference on Pattern Recognition. 2006. IEEE. p. 552-555.
23. Szarvas, M., U. Sakai, and J. Ogata. Real-time pedestrian detection using LIDAR and convolutional neural networks. in IEEE Intelligent Vehicles Symposium. 2006. IEEE. p. 213-218.
24. Peemen, M., B. Mesman, and C. Corporaal. Speed sign detection and recognition by convolutional neural networks. in Proceedings of the 8th International Automotive Congress. 2011. p. 162-170.
25. Simard, P.Y., D. Steinkraus, and J.C. Platt. Best practices for convolutional neural networks applied to visual document analysis. in International Conference on Document Analysis and Recognition. 2003. IEEE Computer Society. p. 958-958.
26. Otsu, N., A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man and Cybernetics, 1979. 9(1): p. 62-66.
27. Canny, J., A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986. PAMI-8(6): p. 679-698.
28. Duda, R.O. and P.E. Hart, Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM, 1972. 15(1): p. 11-15.
29. Bradley, D. and G. Roth, Adaptive Thresholding using the Integral Image. Journal of Graphics, GPU, and Game Tools, 2007. 12(2): p. 13-21.
30. Ohbuchi, E., H. Hanaizumi, and L.A. Hock. Barcode readers using the camera device in mobile phones. in Cyberworlds, 2004 International Conference on. 2004. p. 260-265.
31. Gonzalez, R.C. and R.E. Woods, Digital Image Processing (3rd Edition). 2006: Prentice-Hall, Inc.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4584-
dc.description.abstract條碼長期被當作資訊的圖形辨識原件,不過在複雜背景中,可自動偵測出不同扭曲或傾斜的條碼,還是一大挑戰。此研究提出可自動偵測這些類型的條碼定位系統。在這研究中用來測試此系統的條碼,包含一維條碼Code 39、Code 128和EAN- 13,與二維條碼QR code。此定位系統利用捲積類神經網路(Convolutional neural network)演算法,辨別影像中條碼的區域。接著透過影像處理的方法,將區域中的條碼切取出來。實驗結果證實此條碼定位系統是可以偵測特定範圍的條碼大小,甚至對於模糊或變形的條碼也能有效的偵測能力。此演算法在449張實驗影像中,可以達到86.25%的偵測率與78.55%切取率。zh_TW
dc.description.abstractBarcodes have been long used for data storage. Locating barcodes in images of complex background is an essential yet challenging step for automatic barcode reading. This study aimed to detect and to extract one-dimensional Code 39, Code 128, and EAN-13 barcodes and two-dimensional QR barcodes in images of arbitrary backgrounds. The proposed method involved a convolutional neural network for detecting parts of barcodes. Once positive detection was confirmed, image processing algorithms were implemented to extract barcodes from the image. Experiments demonstrated that the proposed approach was able to locate barcodes of various module sizes and was robust to blurring, rotation, and deformation. The approach achieved an overall detection rate of 86.45% and an extraction rate of 78.55% using a set of 449 images.en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:43:43Z (GMT). No. of bitstreams: 1
ntu-104-R02631023-1.pdf: 1427775 bytes, checksum: 37b70124adb555536bb92d302e490a84 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsACKNOWLEDGEMENTS i
摘要 ii
ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
CHAPTER 1. INTRODUCTION 1
1.1 Barcode 1
1.2 Convolutional neural networks 2
1.3 Objectives 2
1.4 Organization 3
CHAPTER 2. LITERATURE REVIEW 4
2.1 One-dimensional barcode localization 4
2.2 Two-dimensional barcode localization 4
2.3 Detecting barcodes using texture features 5
2.4 Convolution neural network 5
CHAPTER 3. MATERIAL AND METHODS 7
3.1 Collection of training image patches 7
3.2 CNN architecture 9
3.3 Detection of barcode with various module sizes 10
3.4 Scan line extraction for one-dimensional barcodes 11
3.5 Region extraction for two-dimensional barcodes 13
CHAPTER 4. RESULTS AND DISCUSSION 15
4.1 Feature maps of the trained CNN model 15
4.2 Robustness of the CNN classifier to blur, module size variation, and rotation 16
4.3 The process time of the proposed barcode detection 19
4.4 The results of barcode detection on the test data 20
4.5 The results of barcode extraction on the test data 22
CHAPTER 5. CONCLUSION 24
REFERENCES 25
dc.language.isoen
dc.subject機器學習zh_TW
dc.subject條碼定位zh_TW
dc.subject捲積類神經網路zh_TW
dc.subject影像處理zh_TW
dc.subjectbarcode localizationen
dc.subjectmachine learningen
dc.subjectimage processingen
dc.subjectconvolutional neural networken
dc.title利用捲積類神經網路定位複雜背景中的條碼zh_TW
dc.titleBarcode Localization Using Convolutional Neural Networksen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee花凱龍(Kai-Lung Hua),林顯易(Hsien-I Lin)
dc.subject.keyword條碼定位,捲積類神經網路,影像處理,機器學習,zh_TW
dc.subject.keywordbarcode localization,convolutional neural network,image processing,machine learning,en
dc.relation.page28
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-08-06
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf1.39 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved