Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45834
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor阮雪芬
dc.contributor.authorYi-Te Chouen
dc.contributor.author周宜德zh_TW
dc.date.accessioned2021-06-15T04:46:59Z-
dc.date.available2012-08-06
dc.date.copyright2010-08-06
dc.date.issued2010
dc.date.submitted2010-08-05
dc.identifier.citation1. Garcia M, J.A., Ward EM, Center MM, Hao Y, Siegel RL, Thun MJ, Global Cancer Facts & Figures 2007. American Cancer Society, 2007.
2. 行政院衛生署, 衛生統計資料. 2009.
3. Hatakeyama, M., Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer, 2004. 4(9): p. 688-94.
4. Mortimer, J.C., et al., Annexins: multifunctional components of growth and adaptation. J Exp Bot, 2008. 59(3): p. 533-44.
5. Morgan, R.O., et al., Deciphering function and mechanism of calcium-binding proteins from their evolutionary imprints. Biochim Biophys Acta, 2006. 1763(11): p. 1238-49.
6. Rescher, U. and V. Gerke, Annexins--unique membrane binding proteins with diverse functions. J Cell Sci, 2004. 117(Pt 13): p. 2631-9.
7. Gerke, V., C.E. Creutz, and S.E. Moss, Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol, 2005. 6(6): p. 449-61.
8. Gerke, V. and S.E. Moss, Annexins: from structure to function. Physiol Rev, 2002. 82(2): p. 331-71.
9. Hayes, M.J. and S.E. Moss, Annexins and disease. Biochem Biophys Res Commun, 2004. 322(4): p. 1166-70.
10. Kaetzel, M.A., et al., Phosphorylation mutants elucidate the mechanism of annexin IV-mediated membrane aggregation. Biochemistry, 2001. 40(13): p. 4192-9.
11. Willshaw, A., et al., Identification of a novel protein complex containing annexin A4, rabphilin and synaptotagmin. FEBS Lett, 2004. 559(1-3): p. 13-21.
12. Chan, H.C., et al., Annexin IV inhibits calmodulin-dependent protein kinase II-activated chloride conductance. A novel mechanism for ion channel regulation. J Biol Chem, 1994. 269(51): p. 32464-8.
13. Kaetzel, M.A., et al., A role for annexin IV in epithelial cell function. Inhibition of calcium-activated chloride conductance. J Biol Chem, 1994. 269(7): p. 5297-302.
14. Xie, W., et al., Inositol 3,4,5,6-tetrakisphosphate inhibits the calmodulin-dependent protein kinase II-activated chloride conductance in T84 colonic epithelial cells. J Biol Chem, 1996. 271(24): p. 14092-7.
15. Piljic, A. and C. Schultz, Annexin A4 self-association modulates general membrane protein mobility in living cells. Mol Biol Cell, 2006. 17(7): p. 3318-28.
16. Sohma, H., et al., Alteration of annexin IV expression in alcoholics. Alcohol Clin Exp Res, 2001. 25(6 Suppl): p. 55S-8S.
17. Sohma, H., et al., Ethanol-induced augmentation of annexin IV expression in rat C6 glioma and human A549 adenocarcinoma cells. Alcohol Clin Exp Res, 2002. 26(8 Suppl): p. 44S-48S.
18. Ohkawa, H., et al., Ethanol-induced augmentation of annexin IV in cultured cells and the enhancement of cytotoxicity by overexpression of annexin IV by ethanol. Biochim Biophys Acta, 2002. 1588(3): p. 217-25.
19. Jeon, Y.J., et al., Annexin A4 interacts with the NF-kappaB p50 subunit and modulates NF-kappaB transcriptional activity in a Ca2+-dependent manner. Cell Mol Life Sci, 2010. 67(13): p. 2271-81.
20. Kim, A., et al., Enhanced expression of Annexin A4 in clear cell carcinoma of the ovary and its association with chemoresistance to carboplatin. Int J Cancer, 2009. 125(10): p. 2316-22.
21. Han, E.K., et al., Modulation of paclitaxel resistance by annexin IV in human cancer cell lines. Br J Cancer, 2000. 83(1): p. 83-8.
22. Seliger, B., et al., Combined analysis of transcriptome and proteome data as a tool for the identification of candidate biomarkers in renal cell carcinoma. Proteomics, 2009. 9(6): p. 1567-81.
23. Zimmermann, U., et al., Increased expression and altered location of annexin IV in renal clear cell carcinoma: a possible role in tumour dissemination. Cancer Lett, 2004. 209(1): p. 111-8.
24. Alfonso, P., et al., Proteome analysis of membrane fractions in colorectal carcinomas by using 2D-DIGE saturation labeling. J Proteome Res, 2008. 7(10): p. 4247-55.
25. Duncan, R., et al., Characterisation and protein expression profiling of annexins in colorectal cancer. Br J Cancer, 2008. 98(2): p. 426-33.
26. Lin, L.-L., et al., Annexin A4: A novel molecular marker for gastric cancer with Helicobacter pylori infection using proteomics approach. PROTEOMICS - Clinical Applications, 2008. 2(4): p. 619-634.
27. Csala, M., G. Banhegyi, and A. Benedetti, Endoplasmic reticulum: a metabolic compartment. FEBS Lett, 2006. 580(9): p. 2160-5.
28. Larman, M. and J. Lucy, The endoplasmic reticulum: structure and function. Mol Membr Biol, 1999. 16(4): p. 313-6.
29. Schroder, M., Endoplasmic reticulum stress responses. Cell Mol Life Sci, 2008. 65(6): p. 862-94.
30. Rutkowski, D.T. and R.J. Kaufman, A trip to the ER: coping with stress. Trends Cell Biol, 2004. 14(1): p. 20-8.
31. Benali-Furet, N.L., et al., Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion. Oncogene, 2005. 24(31): p. 4921-33.
32. Ozcan, U., et al., Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science, 2004. 306(5695): p. 457-61.
33. Harding, H.P., et al., Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell, 2000. 5(5): p. 897-904.
34. Mori, K., Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell, 2000. 101(5): p. 451-4.
35. Kaufman, R.J., Orchestrating the unfolded protein response in health and disease. J Clin Invest, 2002. 110(10): p. 1389-98.
36. Gething, M.J. and J. Sambrook, Protein folding in the cell. Nature, 1992. 355(6355): p. 33-45.
37. Pahl, H.L., et al., Activation of transcription factor NF-kappaB by the adenovirus E3/19K protein requires its ER retention. J Cell Biol, 1996. 132(4): p. 511-22.
38. Hu, P., et al., Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J Biol Chem, 2004. 279(47): p. 49420-9.
39. Hung, J.H., et al., Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-kappaB and pp38 mitogen-activated protein kinase. J Biol Chem, 2004. 279(45): p. 46384-92.
40. Pahl, H.L. and P.A. Baeuerle, The ER-overload response: activation of NF-kappa B. Trends Biochem Sci, 1997. 22(2): p. 63-7.
41. Lawless, M.W., et al., Expression of hereditary hemochromatosis C282Y HFE protein in HEK293 cells activates specific endoplasmic reticulum stress responses. BMC Cell Biol, 2007. 8: p. 30.
42. Lawless, M.W., et al., Activation of endoplasmic reticulum-specific stress responses associated with the conformational disease Z alpha 1-antitrypsin deficiency. J Immunol, 2004. 172(9): p. 5722-6.
43. Kelly, E., et al., Selenoprotein S/SEPS1 modifies endoplasmic reticulum stress in Z variant alpha1-antitrypsin deficiency. J Biol Chem, 2009. 284(25): p. 16891-7.
44. Hsieh, Y.H., et al., Pre-S mutant surface antigens in chronic hepatitis B virus infection induce oxidative stress and DNA damage. Carcinogenesis, 2004. 25(10): p. 2023-32.
45. Oster, S.K., et al., The myc oncogene: MarvelouslY Complex. Adv Cancer Res, 2002. 84: p. 81-154.
46. Gingras, A.C., B. Raught, and N. Sonenberg, eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem, 1999. 68: p. 913-63.
47. Rosenwald, I.B., et al., Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2 alpha in response to growth induction by c-myc. Proc Natl Acad Sci U S A, 1993. 90(13): p. 6175-8.
48. Lin, C.J., et al., c-Myc and eIF4F are components of a feedforward loop that links transcription and translation. Cancer Res, 2008. 68(13): p. 5326-34.
49. Hill, W.G., et al., Annexin A4 reduces water and proton permeability of model membranes but does not alter aquaporin 2-mediated water transport in isolated endosomes. J Gen Physiol, 2003. 121(5): p. 413-25.
50. Natsume, Y., et al., Protective effect of quercetin on ER stress caused by calcium dynamics dysregulation in intestinal epithelial cells. Toxicology, 2009. 258(2-3): p. 164-75.
51. Tsujii-Hayashi, Y., et al., A potential endogenous ligand of annexin IV in the exocrine pancreas. Carbohydrate structure of GP-2, a glycosylphosphatidylinositol-anchored glycoprotein of zymogen granule membranes. J Biol Chem, 2002. 277(49): p. 47493-9.
52. Hotamisligil, G.S. and E. Erbay, Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol, 2008. 8(12): p. 923-34.
53. Ma, Y. and L.M. Hendershot, The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer, 2004. 4(12): p. 966-77.
54. Bakkar, N. and D.C. Guttridge, NF-kappaB signaling: a tale of two pathways in skeletal myogenesis. Physiol Rev, 2010. 90(2): p. 495-511.
55. Zimmer, S.G., A. DeBenedetti, and J.R. Graff, Translational control of malignancy: the mRNA cap-binding protein, eIF-4E, as a central regulator of tumor formation, growth, invasion and metastasis. Anticancer Res, 2000. 20(3A): p. 1343-51.
56. Graff, J.R., et al., Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res, 2008. 68(3): p. 631-4.
57. Mamane, Y., et al., eIF4E--from translation to transformation. Oncogene, 2004. 23(18): p. 3172-9.
58. Park, J.K., et al., c-Myc exerts a protective function through ornithine decarboxylase against cellular insults. Mol Pharmacol, 2002. 62(6): p. 1400-8.
59. Hosoi, T., et al., Akt up- and down-regulation in response to endoplasmic reticulum stress. Brain Res, 2007. 1152: p. 27-31.
60. Dai, R., R. Chen, and H. Li, Cross-talk between PI3K/Akt and MEK/ERK pathways mediates endoplasmic reticulum stress-induced cell cycle progression and cell death in human hepatocellular carcinoma cells. Int J Oncol, 2009. 34(6): p. 1749-57.
61. Lew, Y., et al., Expression of elongation factor-1 gamma-related sequence in human pancreatic cancer. Pancreas, 1992. 7(2): p. 144-52.
62. Yokota, S., et al., Increased expression of cytosolic chaperonin CCT in human hepatocellular and colonic carcinoma. Cell Stress Chaperones, 2001. 6(4): p. 345-50.
63. Yeung, K., et al., Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature, 1999. 401(6749): p. 173-7.
64. Yeung, K., et al., Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the raf kinase inhibitor protein. Mol Cell Biol, 2000. 20(9): p. 3079-85.
65. McCubrey, J.A., et al., Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta, 2007. 1773(8): p. 1263-84.
66. Roberts, P.J. and C.J. Der, Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 2007. 26(22): p. 3291-310.
67. Lee, H.C., et al., Loss of Raf kinase inhibitor protein promotes cell proliferation and migration of human hepatoma cells. Gastroenterology, 2006. 131(4): p. 1208-17.
68. Dangi-Garimella, S., et al., Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J, 2009. 28(4): p. 347-58.
69. Bell, S.P. and A. Dutta, DNA replication in eukaryotic cells. Annu Rev Biochem, 2002. 71: p. 333-74.
70. Labib, K., J.A. Tercero, and J.F. Diffley, Uninterrupted MCM2-7 function required for DNA replication fork progression. Science, 2000. 288(5471): p. 1643-7.
71. Ren, B., et al., MCM7 amplification and overexpression are associated with prostate cancer progression. Oncogene, 2006. 25(7): p. 1090-8.
72. Nishihara, K., et al., Minichromosome maintenance protein 7 in colorectal cancer: implication of prognostic significance. Int J Oncol, 2008. 33(2): p. 245-51.
73. Feng, C.J., et al., Expression of Mcm7 and Cdc6 in oral squamous cell carcinoma and precancerous lesions. Anticancer Res, 2008. 28(6A): p. 3763-9.
74. Dasso, M., The Ran GTPase: theme and variations. Curr Biol, 2002. 12(14): p. R502-8.
75. Yamaguchi, R. and J. Newport, A role for Ran-GTP and Crm1 in blocking re-replication. Cell, 2003. 113(1): p. 115-25.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45834-
dc.description.abstractAnnexin家族廣泛存在於各物種內,是一群於C端具有獨特重複片段 (annexin repeat)的蛋白質,能藉由重複片段與鈣離子結合,並由鈣離子作為橋梁,可與膜上特定帶負電的磷脂質結合;而成員間的差異在於N端序列的變異性高,這使它們各自具有獨特的功能,參與了多樣的生理功能,包括:胞器運送、訊息傳遞、細胞分裂、細胞生長調節、細胞凋亡等。許多已發表的研究結果指出不同的annexin成員會於特定的腫瘤細胞中表現量上升,除了可作為生物標誌的可能性外,也暗示著annexin可能參與了腫瘤生成與發展的過程。根據先前我們實驗室發表的研究報告指出,annexin家族成員之一的annexin A4在受到胃幽門螺旋桿菌 (Helicobacter pylori)感染的胃癌病人組織及胃癌細胞株中皆會有表現量上升的現象,而抑制annexin A4表現則會減少因幽門螺旋桿菌感染而導致的interleukin-8分泌。為了探討annexin A4於胃癌細胞中的功能及其表現量增加後對胃癌細胞產生的影響,我們運用了蛋白質二維膠體電泳合併質譜儀的方法,偵測annexin A4大量表現後胃癌細胞AGS的蛋白質體變化;我們總共鑑定出36個表現量出現明顯差異的蛋白質,經由生物資訊資料庫軟體Ingenuity Pathway Analysis的輔助分析,推測細胞中產生了內質網壓力反應。在已發表的文獻中指出內質網壓力能促進細胞遷移能力,於是我們利用西方墨點法、創傷癒合實驗、胃癌細胞遷移能力測試及微陣列資料分析,證實了在annexin A4表現上升的胃癌細胞中,內質網壓力反應相關的蛋白質表現量有上升的趨勢,其下游的轉錄因子Nuclear factor kappa B (NF-kB)及c-myc的表現量上升,且同時促進Akt的活化,這些變化誘導真核起始因子4E (eukaryotic initiation factor 4E, EIF4E)的表現增加,導致胃癌細胞遷移的能力提高的結果。而給予細胞內質網壓力反應抑制劑8-(N,N-Diethylamino)-octyl-3,4,5-trimethoxybenzoate (TMB-8)則能回復這個現象。我們的結果提供了一個可能的作用機制,以解釋為何annexin A4表現量增加會導致胃癌細胞遷移的能力,這將為胃癌的治療提供有用的資訊。zh_TW
dc.description.abstractThe annexin family is ubiquitous proteins capable of binding to membrane with their C-terminal annexin repeats in a Ca2+-dependent manner. The variances of N-terminal of each annexin member contribute to their wide variety of functions including vesicle trafficking, signaling, cell division, growth regulation and apoptosis. Their differentially expressions in distinct tumors are considered as biomarkers and may imply the participation in tumorgenesis. Our previous study showed that annexin A4, a member of annexin family, was overexpressed in both gastric tumor tissues and host cancer cells infected by Helicobacter pylori (H. pylori). Meanwhile, the production of IL-8, an indicator of infection, decreased after annexin A4 knockdown. To investigate the role of annexin A4 in gastric cancer cells, proteomics and network analysis were performed. 36 differentially expressed proteins and a network analysis related to protein folding were identified using Ingenuity Pathway Analysis software. Furthermore, we found ER stress pathway which may increase cell migration ability was very important in annexin A4-overexpressed cells. Therefore, we used western blotting, wound healing assay, cell migration ability assay to elucidate the expression levels of proteins involved in the response to ER stress and migration ability in annexin A4-overexpressed gastric cancer cells. Here, we show that annexin A4 overexpression not only increases ER stress related protein expression and migration ability but also activates two transcription factors, Nuclear factor kappa B (NF-kB) and c-myc, and triggers Akt phosphorylation. These changes might lead to a substantial rise in the expression of the eukaryotic initiation factor 4E (eIF4E) gene, ultimately promoting the migratory ability of gastric cancer cells. The phenomenon was reversed by treating cells with ER stress signaling inhibitor, 8-(N,N-Diethylamino)-octyl-3,4,5-trimethoxybenzoate (TMB-8). Our results demonstrated a plausible mechanism to explain the phenomena that migratory ability increased in annexin A4-overexpressed gastric cancer cells. Eventually, these findings provide useful information in gastric cancer therapy.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:46:59Z (GMT). No. of bitstreams: 1
ntu-99-R97b43005-1.pdf: 7917958 bytes, checksum: 8bc9bbeab966d266bdffe93b6e22822e (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝 I
中文摘要 III
Abstract V
第1章 簡介 1
1.1. 胃癌 1
1.1.1. 胃癌的危險因子 1
1.2. Annexin蛋白質 2
1.2.1. Annexin A4蛋白質 3
1.3. 內質網 (Endoplasmic reticulum, ER) 4
1.3.1. 內質網壓力 (ER stress)來源 4
1.3.2. 內質網壓力訊息傳遞 (ER stress signaling) 4
1.4. 研究動機 5
第2章 實驗材料與方法 7
2.1. 細胞培養 7
2.1.1. AGS細胞株簡介 7
2.1.2. RPMI-1640培養基配製 7
2.1.3. 細胞解凍 7
2.1.4. 細胞繼代培養 8
2.1.5. 細胞冷凍保存 8
2.1.6. 細胞計數 8
2.2. 建構pcDNA3.1(+)-Annexin A4表現載體 8
2.2.1. 細胞總RNA萃取 8
2.2.2. 反轉錄聚合酶鏈鎖反應 (Reverse Transcription PCR) 9
2.2.3. 聚合酶鏈鎖反應放大目標基因 (PCR amplification) 10
2.2.4. 聚合酶鏈鎖反應產物純化 (PCR clean up) 10
2.2.5. 質體抽取與保存 11
2.2.6. 雙重限制酶切反應 (Double digestion) 11
2.2.7. 1 %洋菜膠體製備及核酸電泳 12
2.2.8. 膠體萃取 (Gel extraction) 12
2.2.9. 接合反應 (Ligation) 12
2.2.10. 質體轉形作用 (Plasmid transformation) 12
2.2.11. 菌落聚合酶鏈鎖反應 (Colony PCR) 13
2.3. 細胞轉染 (Cell transfection) 13
2.4. 細胞蛋白質溶解液製備 13
2.5. 蛋白質濃度測定 13
2.6. 二維膠體電泳 (Two-dimensional electrophoresis) 14
2.6.1. 一維等電點電泳 (isoelectronic focusing, IEF) 14
2.6.2. SDS二維膠片鑄膠 15
2.6.3. 二維電泳 15
2.6.4. 膠片染色 16
2.6.5. 蛋白質圖譜比對 16
2.6.6. 膠體內酶切萃取 (In-gel digestion) 16
2.6.7. MALDI-TOF-TOF質譜 16
2.6.8. MASCOT蛋白質身份鑑定 17
2.7. 西方墨點法 (Western blot) 17
2.8. 創傷癒合實驗 (Wound healing assay) 18
2.9. 細胞遷移能力實驗 (Cell migration ability assay) 18
2.10. 微陣列資料分析 18
第3章 結果 20
3.1. 於AGS中大量表現annexin A4 20
3.2. 二維膠體電泳分離大量表現annexin A4的AGS細胞總蛋白質 20
3.3. 鑑定出36種表現量產生差異的蛋白質點 21
3.4. 使用Ingenuity Pathway Analysis (IPA)分析表現量有差異的蛋白質,發現可能與內質網壓力有關 21
3.5. 以西方墨點法驗證內質網壓力的產生 22
3.6. 大量表現annexin A4的細胞中轉錄因子NF-κB增加 22
3.7. 創傷癒合實驗顯示annexin A4增加後細胞遷移能力上升 22
3.8. 細胞遷移能力實驗測試細胞遷移能力的變化程度 23
3.9. 藥物抑制內質網壓力的產生將降低annexin A4表現量上升細胞的遷移能力 23
3.10. 微陣列資料中指出annexin A4增加後,與細胞遷移有關的EIF4E於mRNA層級的表現量大幅上升 24
3.11. eIF4E在蛋白質層級的表現量亦有上升 24
3.12. 內質網壓力可能透過TNF、c-myc及caspase分子而使EIF4E增加 24
3.13. Annexin A4表現量上升的細胞中,c-myc表現量提高 24
3.14. Annexin A4增加導致了Akt磷酸化程度上升 25
第4章 結論與討論 26
第5章 參考文獻 32
第6章 圖 37
第7章 表 53
附錄 58
dc.language.isozh-TW
dc.titleAnnexin A4經由引發內質網壓力而促進細胞遷移能力zh_TW
dc.titleAnnexin A4 Enhances Cell Migration Ability through Triggering Endoplasmic Reticulum Stress Signalingen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃宣誠,陳水田,陳炯年,徐駿森
dc.subject.keyword蛋白質體學,Annexin A4,胃癌,內質網壓力,細胞遷移,zh_TW
dc.subject.keywordProteomics,annexin A4,gastric cancer,ER stress,cell migration,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2010-08-05
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
7.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved