請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45816
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊鏡堂(Jing-Tang Yang) | |
dc.contributor.author | Chu-Hsiang Wu | en |
dc.contributor.author | 吳楚翔 | zh_TW |
dc.date.accessioned | 2021-06-15T04:46:39Z | - |
dc.date.available | 2012-08-09 | |
dc.date.copyright | 2010-08-09 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-04 | |
dc.identifier.citation | Aref, H., 1984, 'Stirring by chaotic advection,' Journal of Fluid Mechanics, 143(1), pp. 1-21.
Barz, D. P. J., Zadeh, H. F., and Ehrhard, P., 2008, 'Laminar flow and mass transport in a twice-folded microchannel,' AIChE Journal, 54(2), pp. 381-393. Bhagat, A. A. S., Kuntaegowdanahalli, S. S., and Papautsky, I., 2008, 'Continuous particle separation in spiral microchannels using dean flows and differential migration,' Lab on a Chip, 8(11), pp. 1906-1914. Burns, M. A., Johnson, B. N., Brahmasandra, S. N., Handique, K., Webster, J. R., Krishnan, M., Sammarco, T. S., Man, P. M., Jones, D., Heldsinger, D., Mastrangelo, C. H., and Burke, D. T., 1998, 'An integrated nanoliter DNA analysis device,' Science, 282(5388), pp. 484-487. Carlo, D. D., 2009, 'Inertial microfluidics,' Lab on a Chip, 9(21), pp. 3038-3046. Castelain, C., Mokrani, A., Le Guer, Y., and Peerhossaini, H., 2001, 'Experimental study of chaotic advection regime in a twisted duct flow,' Eur. J. Mech. B-Fluids, 20(2), pp. 205-232. Choi, S., and Park, J. K., 2007, 'Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel,' Lab on a Chip, 7(7), pp. 890-897. Di Carlo, D., Irimia, D., Tompkins, R. G., and Toner, M., 2007, 'Continuous inertial focusing, ordering, and separation of particles in microchannels,' Proceedings of the National Academy of Sciences of the United States of America, 104(48), pp. 18892-18897. Dittrich, P. S., Muller, B., and Schwille, P., 2004, 'Studying reaction kinetics by simultaneous FRET and cross-correlation analysis in a miniaturized continuous flow reactor,' Physical Chemistry Chemical Physics, 6(18), pp. 4416-4420. Fang, W. F., and Yang, J. T., 2009, 'A novel microreactor with 3D rotating flow to boost fluid reaction and mixing of viscous fluids,' Sens. Actuator B-Chem., 140(2), pp. 629-642. Frenz, L., El Harrak, A., Pauly, M., Begin-Colin, S., Griffiths, A. D., and Baret, J. C., 2008, 'Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles,' Angew. Chem.-Int. Edit., 47(36), pp. 6817-6820. Goluch, E. D., Nam, J. M., Georganopoulou, D. G., Chiesl, T. N., Shaikh, K. A., Ryu, K. S., Barron, A. E., Mirkin, C. A., and Liu, C., 2006, 'A bio-barcode assay for on-chip attomolar-sensitivity protein detection,' Lab on a Chip, 6(10), pp. 1293-1299. Herrmann, M., Veres, T., and Tabrizian, M., 2006, 'Enzymatically-generated fluorescent detection in micro-channels with internal magnetic mixing for the development of parallel microfluidic ELISA,' Lab on a Chip, 6(4), pp. 555-560. Hessel, V., Hardt, S., Lowe, H., and Schonfeld, F., 2003, 'Laminar mixing in different interdigital micromixers: I. Experimental characterization,' AIChE Journal, 49(3), pp. 566-577. Hsu, M. H., Fang, W. F., Lai, Y. H., Yang, J. T., Tsai, T. L., and Shieh, D. B., 2010, 'Enhanced mobile hybridization of decorated gold nanoparticles with oligonucleotide in microchannel devices,' Lab on a Chip [in press] Ismagilov, R. F., Rosmarin, D., Kenis, P. J. A., Chiu, D. T., Zhang, W., Stone, H. A., and Whitesides, G. M., 2001, 'Pressure-driven laminar flow in tangential microchannels: an elastomeric microfluidic switch,' Analytical Chemistry, 73(19), pp. 4682-4687. Jacobson, S. C., McKnight, T. E., and Ramsey, J. M., 1999, 'Microfluidic devices for electrokinetically driven parallel and serial mixing,' Analytical Chemistry, 71(20), pp. 4455-4459. Kim, D. S., Lee, S. H., Kwon, T. H., and Ahn, C. H., 2005, 'A serpentine laminating micromixer combining splitting/recombination and advection,' Lab on a Chip, 5(7), pp. 739-747. Kim, S., and Lee, S. J., 2009, 'Measurement of Dean flow in a curved micro-tube using micro digital holographic particle tracking velocimetry,' Experiments in Fluids, 46(2), pp. 255-264. Kinoshita, H., Kaneda, S., Fujii, T., and Oshima, M., 2007, 'Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV,' Lab on a Chip, 7(3), pp. 338-346. Lai Y. H., and Yang, J. T., 2010, 'Enhanced mixing of droplets during coalescence on a surface with a wettability gradient,' Lab on a Chip [in minor revision]. Lai, Y. H., Yang, J. T., and D. B. Hsieh, 2010, 'A microchip fabricated with a vapor-diffusion self-assembled-monolayer method to transport droplets across superhydrophobic to hydrophilic surfaces,' Lab on a Chip, 10, pp. 499-504. Lindken, R., Rossi, M., Grosse, S., and Westerweel, J., 2009, 'Micro-Particle Image Velocimetry (mu PIV): Recent developments, applications, and guidelines,' Lab on a Chip, 9(17), pp. 2551-2567. Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Adrian, R. J., Aref, H., and Beebe, D. J., 2000, 'Passive mixing in a three-dimensional serpentine microchannel,' Journal of Microelectromechanical Systems, 9(2), pp. 190-197. Liu, R. H., Yang, J. N., Pindera, M. Z., Athavale, M., and Grodzinski, P., 2002, 'Bubble-induced acoustic micromixing,' Lab on a Chip, 2(3), pp. 151-157. Lu, H. W., Bottausci, F., Fowler, J. D., Bertozzi, A. L., Meinhart, C., and Kim, C. J., 2008, 'A study of EWOD-driven droplets by PIV investigation,' Lab on a Chip, 8(3), pp. 456-461. Lu, L. H., Ryu, K. S., and Liu, C., 2002, 'A magnetic microstirrer and array for microfluidic mixing,' Journal of Microelectromechanical Systems, 11(5), pp. 462-469. Manz, A., Graber, N., and Widmer, H. M., 1990, 'Miniaturized total chemical analysis systems: a novel concept for chemical sensing,' Sensors and Actuators B: Chemical, 1(1-6), pp. 244-248. Meinhart, C. D., Wereley, S. T., and Santiago, J. G., 1999, 'PIV measurements of a microchannel flow,' Experiments in fluids, 27(5), pp. 414-419. Nguyen, N. T., and Wu, Z. G., 2005, 'Micromixers - a review,' Journal of Micromechanics and Microengineering, 15(2), pp. R1-R16. Niu, X. Z., and Lee, Y. K., 2003, 'Efficient spatial-temporal chaotic mixing in microchannels,' Journal of Micromechanics and Microengineering, 13(3), pp. 454-462. Okkels, F., and Tabeling, P., 2004, 'Spatiotemporal resonances in mixing of open viscous fluids,' Physical Review Letters, 92(3). Ottino, J. M., Muzzio, F. J., Tjahjadi, M., Franjione, J. G., Jana, S. C., and Kusch, H. A., 1992, 'Chaos, symmetry, and self-similarity - exploiting order and disorder in mixing processes,' Science, 257(5071), pp. 754-760. Park, J. S., Choi, C. K., and Kihm, K. D., 2004, 'Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM),' Experiments in Fluids, 37(1), pp. 105-119. Posner, J. D., and Santiago, J. G., 2006, 'Convective instability of electrokinetic flows in a cross-shaped microchannel,' Journal of Fluid Mechanics, 555, pp. 1-42. Raffel, M., Wereley, S. T., Willert, C. E., Kompenhans, J., 2007, Particle Image Velocimetry: A Practical Guide, Springer-Verlag Berlin Heidelberg, Berlin Heidelberg. Reyes, D. R., 2002, 'Micro total analysis systems. 1. Introduction, theory, and technology,' Analytical Chemistry, 74(12), pp. 2623-2636. Santiago, J. G., Wereley, S. T., Meinhart, C. D., Beebe, D. J., and Adrian, R. J., 1998, 'A particle image velocimetry system for microfluidics,' Experiments in Fluids, 25(4), pp. 316-319. Song, H., Tice, J. D., and Ismagilov, R. F., 2003, 'A microfluidic system for controlling reaction networks in time,' Angew. Chem.-Int. Edit., 42(7), pp. 768-772. Sritharan, K., Strobl, C. J., Schneider, M. F., Wixforth, A., and Guttenberg, Z., 2006, 'Acoustic mixing at low Reynold's numbers,' Applied Physics Letters, 88(5), -----. Stroock, A. D., Dertinger, S. K. W., Ajdari, A., Mezic, I., Stone, H. A., and Whitesides, G. M., 2002, 'Chaotic mixer for microchannels,' Science, 295(5555), pp. 647-651. Sugino, H., Ozaki, K., Shirasaki, Y., Arakawa, T., Shoji, S., and Funatsu, T., 2009, 'On-chip microfluidic sorting with fluorescence spectrum detection and multiway separation,'Lab on a Chip, 9(9), pp. 1254-1260. Tung, K. Y., Li, C. C., and Yang, J. T., 2009, 'Mixing and hydrodynamic analysis of a droplet in a planar serpentine micromixer,' Microfluid. Nanofluid., 7(4), pp. 545-557. Tung, K. Y., and Yang, J. T., 2008, 'Analysis of a chaotic micromixer by novel methods of particle tracking and FRET,' Microfluid. Nanofluid., 5(6), pp. 749-759. Veenstra, T. T., Lammerink, T. S. J., Elwenspoek, M. C., and van den Berg, A., 1999, 'Characterization method for a new diffusion mixer applicable in micro flow injection analysis systems,' Journal of Micromechanics and Microengineering, 9(2), pp. 199-202. Wang, L. L., and Yang, J. T., 2006, 'An overlapping crisscross micromixer using chaotic mixing principles,' Journal of Micromechanics and Microengineering, 16(12), pp. 2684-2691. Yang, J. T., Fang, W. F., and Tung, K. Y., 2008, 'Fluids mixing in devices with connected-groove channels,' Chemical Engineering Science, 63(7), pp. 1871-1881. Yang, J. T., Huang, K. J., and Lin, Y. C., 2005, 'Geometric effects on fluid mixing in passive grooved micromixers,' Lab on a Chip, 5(10), pp. 1140-1147. Yang, J. T., and Lin, K. W., 2006, 'Mixing and separation of two-fluid flow in a micro planar serpentine channel,' Journal of Micromechanics and Microengineering, 16(11), pp. 2439-2448. Yang, J. T., Lai, Y. H., Fang, W. F., and Hsu, M. H., 2010, 'Simultaneous measurement of concentrations and velocities of submicron species using multicolor imaging and microparticle image velocimetry,' Biomicrofluidics, 4(1), pp. 014109-014111. Yea, K. H., Lee, S., Choo, J., and Oh, C. H., 2006, 'Fast and sensitive analysis of DNA hybridization in a PDMS micro-fluidic channel using fluorescence resonance energy transfer,' Chemical Communications, (14), pp. 1509-1511. 方偉峰,2009,微生化反應器之研發與物種速度暨濃度場之同步診測,國立清華大學動力機械工程學系博士論文。 林國偉,2006,雙流體混合機制之數值模擬及實驗分析,國立清華大學動力機械工程學系博士論文。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45816 | - |
dc.description.abstract | 本文以蜿蜒型微反應器為模型,使用一種新式量測方法同步剖析流體在其中流動時的三維濃度場與速度場,達到迅速且完整分析流場資訊的目的;將實驗量測與模擬的結果相互比較後,發現由實驗結果計算所得之混合指數普遍低於數值模擬之結果,且此數值差異隨著流體移動距離增加益加明顯,由此可知螢光粒子在微反應器中的擴散情形以及混合效能受到粒子間互相聚集以及流道壁面沾黏的影響甚巨,因而呈現了數值模擬中無法預期的實驗變數。
微流體元件的分析方法可分為數值模擬驗證與新式量測技術應用兩個主要部分;數值模擬驗證方面是以商用軟體CFD-ACE建立完整的流道模型,利用調控進口處流速改變雷諾數,以此為控制變因分別分析蜿蜒型微反應器內部的流線軌跡、速度場與濃度場在不同雷諾數條件下之情形;量測技術的應用分為染料混合實驗以及三維同步量測兩個部分: 染料混合實驗以定性觀測流場變化為主要目的,拍攝不同截面上的混合影像,以影像的三原色變化趨勢作不同雷諾數下混合效能的比較;三維同步量測中包含速度場與濃度場的建立,速度場的建立是將 micro-PIV技術與雷射誘發螢光術結合,以連續方程式為運算依據將PIV軟體(Insight 5, TSI Inc.)計算所得的二維速度場作後處理,搭配合理的邊界條件假設取得流場中的三維速度向量;三維濃度場的建立則以二元化之粒子計數法結合分水嶺法,正確計算穩態流場中單位空間內之粒子數量,並根據蜿蜒型微流體元件本身之濃度回歸曲線,推測得知流場中各部位的濃度場分佈情形。 本文的特色為新式量測技術實際應用與速度場三維分析方法的建立,透過共軛焦顯微術具有優勢的光學切片能力,獲取實驗中真實的三維流場資訊,其定量化的能力有利於驗證模擬結果,預期此量測方法將對未來各式微反應器的設計與分析上提供一種新的選擇。 | zh_TW |
dc.description.abstract | The purpose of this thesis is to apply a newly invented simultaneously measuring technique to a planar serpentine microreactor, and to construct the whole flow field, including three-dimensional concentration and velocity field, inside the microreactor.
The confocal microscopy and micro-PIV (micro particle image velocimetry) techniques are combined to obtain the concentration information and velocity data in-plane. By stacking up velocity data in different focal planes, the three-dimensional velocity vectors can be determined based on the continuity equation. Flow fields of low Reynolds number are fully constructed and verified with the numerical simulation. The three-dimensional velocity measurement outcome shows great consistency with the simulation results. Due to the accelerating and centrifugal effect of serpentine geometry, the out-of plane velocity component is observed in both the measurement and the simulation. Mixing index of Re = 0.04 and 0.1 are calculated through the concentration data obtained by particle counting method. However, a noticeable amount of difference is shown in the mixing index calculations comparing with numerical simulation. The results suggest that there are actually some unpredictable variables, such as particle aggregation, particle adhesion to walls, and clogging problems, in experimental tests. Mixing efficiency of microreactors may be excessively estimated if designers ignore these crucial factors. The application of a novel simultaneously measuring technique and the construction method of three-dimensional flow field inside a microreactor are demonstrated in this article. The combination of these techniques provides a useful and reliable tool to analyze flow conditions inside microreactors of biomedical use. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:46:39Z (GMT). No. of bitstreams: 1 ntu-99-R97522308-1.pdf: 3551292 bytes, checksum: 94b2f9fb46fae5d303db317dad79ec24 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員會審定書 i
摘要 ii Abstract iii 誌謝 iv 目錄 v 圖表目錄 viii 符號說明 xi 第一章 前 言 1 1.1 研究背景 1 1.2 研究動機與願景 2 第二章 文獻回顧 4 2.1 混合基礎理論 4 2.1.1 擴散運動之統御方程式 5 2.1.2 無因次參數 6 2.2 微反應器 7 2.2.1 微反應器設計 8 2.2.1.1主動式微反應器 8 2.2.1.2被動式微反應器 9 2.2.2 生化反應於微反應器上之應用 11 2.3 量測技術 13 2.3.1 流場可視化技術 13 2.3.2 粒子影像測速儀技術 14 2.4 文獻回顧分析 16 第三章 研究方法 17 3.1 微反應器元件設計 18 3.1.1 無因次參數分析 18 3.1.2 數值模擬分析 21 3.1.3 模擬軟體設置 21 3.1.4 元件設計 23 3.2 元件製程 24 3.2.1 光罩設計 25 3.2.2 黃光微影製程 26 3.2.3 PDMS翻模程序 27 3.3 實驗設置 28 3.3.1 染料混合實驗 30 3.3.2 雷射共軛焦顯微術(laser confocal microscopy) 31 3.3.2.1 雷射共軛焦顯微鏡 31 3.3.2.2 micro-PIV(micro particle image velocimetry)量測技術 34 第四章 平面蜿蜒型微反應器的模擬結果分析 41 4.1 網格獨立測試 41 4.2 流線軌跡分析 44 4.3 混合效能分析 48 4.4 元件內部壓力場分析 52 第五章 實驗觀察與驗證 55 5.1 染料實驗與RGB標準差值分析 55 5.2 蜿蜒型微反應器內部濃度場量測及分析 57 5.2.1 閥值與光學參數設定 58 5.2.2 回歸曲線 59 5.2.3 濃度場量測結果 61 5.3 蜿蜒型微反應器內部速度場量測及分析 65 5.3.1 三維流場分析 66 5.3.2 三維速度場分析 70 第六章 結論與未來展望 86 第七章 論文進度甘梯圖 88 第八章 參考文獻 89 | |
dc.language.iso | zh-TW | |
dc.title | 蜿蜒型流道之三維速度場與濃度場同步量測分析 | zh_TW |
dc.title | Three Dimensional Simultaneous Measurements of Concentration and Velocity Field in a Serpentine Channel | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 趙怡欽(Yei-Chin Chao),謝曉星(Shou-Shing Hsieh),宋齊有(Chyi-Yeou Soong),賴新一(Hsin-Yi Lai) | |
dc.subject.keyword | 微反應器,微粒子影像測速儀,同步量測,三維流場重建技術, | zh_TW |
dc.subject.keyword | microreactor,micro-PIV,simultaneous measurements,3D flow field reconstruction technique, | en |
dc.relation.page | 94 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-05 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 3.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。