請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45809
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖運炫 | |
dc.contributor.author | Lu-Chun Chen | en |
dc.contributor.author | 陳律均 | zh_TW |
dc.date.accessioned | 2021-06-15T04:46:31Z | - |
dc.date.available | 2011-08-23 | |
dc.date.copyright | 2011-08-23 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-18 | |
dc.identifier.citation | 1. 劉文海,鋁基複合材料於活塞之應用動向,金屬工業研究發展中心展業評析報告,2008。
2. Y. M. Quan, Z. H. Zhou, “Machined surface appearance and its influence factors of hard particle-reinforced aluminum matrix composites”, China Mechanical Engineering, 1998, Vol.7, 10-12. 3. S. Barnes, I. R. Pashby, “Through-tool coolant drilling of aluminum/ SiC metal matrix composite”, Transactions of the ASME, Journal of Engineering Materials and Technology, 2000, Vol.122, 384-388. 4. Y. Sahin, M.Kok, H. Celik, “Tool wear and surface roughness of Al2O3 particle-reinforced aluminium alloy composites”, Journal of Materials Processing Technology, 2002, Vol.128, 280–291. 5. Y. M. Quan, “Tool wear and its mechanism for cutting SiC particle-reinforced aluminium matrix composites”, Journal of Materials Processing Technology, 2000, Vol.100, 194-199. 6. D. Z. Wang, H. M. Liu, R. D. Han, Z. Z. Zheng, “A study on a friction formula between tool and chip and wear characteristics when cutting SiC reinforced aluminum composite”, Tribology, 2000, Vol.2, 85-89. 7. J. P. Davim, C. A. C. Antonio, “Optimal drilling of particulate metal matrix composite based on experimental and numerical procedures”, International Journal of Machine Tools & Manufacture, 2001, Vol.41, 21–31. 8. Z. Y. Wu, X. G. Jian, F. G. Sun, “An experimental research on the high-speed milling of SiC particle reinforced aluminum matrix composites”, Mechanical Engineer. 2003, Vol.8, 14-17. 9. A. Pramanik, L.C. Zhang, J.A. Arsecularatne, “An FEM investigation into the behavior of metal matrix composites: Tool–particle interaction during orthogonal cutting”, International Journal of Machine Tools & Manufacture, 2007, Vol.47, 1497–1506. 10. E. Kılıckap, O. Cakır, M. Aksoy, A. Inan, “Study of tool wear and surface roughness in machining of homogenised SiC-p reinforced aluminium metal matrix composite”, Journal of Materials Processing Technology, 2005, Vol.164–165, 862–867. 11. I. Ciftci, M. Turker, U. Seker, “Evaluation of tool wear when machining SiCp-reinforced Al-2014 alloy matrix composites”, Materials and Design. 2004, Vol.25, 251–255. 12. M. S. Karakas, A. Acir, M. Ubeyli, B. Ogel, “Effect of cutting speed on tool performance in milling of B4Cp reinforced aluminum metal matrix composites”, Journal of Materials Processing Technology, 2006, Vol.178, 241-246. 13. J. Monaghan, D. Brazil, “Modelling the flow processes of a particle reinforced metal matrix composite during machining”, Composites, 1998, Vol. 29A, 87–99. 14. D. U. Zhang, Y. M. Quan, M. J. Dai, X. B. Song, B. Xu, “Study on CVD Diamond Thin Film Coated Tools Wear when Machining SiCp/AI Composites”, Mechanical Engineer, 2002, Vol.2, 24-26. 15. JA Ghani, IA Choudhury, HH Masjuki, “Wear mechanism of TiN coated carbide and uncoated cermets tools at high cutting speed applications”, Journal of Materials Processing Technology, 2004, Vol.153-154, 1067-1073. 16. N. S. K. Reddy, S. K. Shin, M. Yang, “Experimental study of surface integrity during end milling of Al/SiC particulate metal-matrix composites”, Journal of Materials Processing Technology, 2008, Vol.201, 574-579. 17. Y. Ozcatalbas, “Investigation of the machinability behaviour of Al4C3 reinforced Al-based composite produced by mechanical alloying technique”, Composites Science and Technology, 2003, Vol.63, 53–61. 18. S. Barnes, I. R. Pashby, “Machining of aluminium based metal matrix composites”, Applied Composite Materials, 1995, Vol.2, 31-42. 19. A.R. Chambers, “The machinability of light alloy MMCs. Composites”, 1996, Part A, Vol. 27, 143–147. 20. J.T. Lin, D. Bhattacharyya, W.G. Ferguson, “Chip formation in the machining of SiC-particle-reinforced aluminium-matrix composites”, Composites Science and Technology, 1998, Vol.58, 285–291. 21. A Manna, B Bhattacharayya, “A study on machinability of Al/SiC-MMC”, Journal of Materials Processing Technology, 2003, 711-716. 22. E KIlIēkap, O ĒakIr, M Aksoy, A Inan, “Study of tool wear and surface roughness in machining of homogenised SiC-p reinforced aluminium metal matrix composite”, Journal of Materials Processing Technology, 2005, Vol.164-165, 862-867. 23. JT Lin, D Bhattacharyya, C Lane, “Machinability of a silicon carbide reinforced aluminium metal matrix composite”, Wear, 1995, Vol.181-183, Part 2, 883-888. 24. L. Cronjager, “Machining of fibre and particles reinforced aluminium”, CIRP annals, 1992, Vol. 41, 63–66. 25. L. A. Looney, J. M. Monaghan, “The turning of an Al/SiC metal-matrix composite. Journal of Materials Processing Technology”, 1992, Vol.33, 453-468. 26. Z. Y. Wu, X. G. Wang, F. G. Sun, “Research on higher speed milling processes of sic Particle Reinforced aluminium matrix composites”, Tool Engineering, 2004, Vol.3, 15-17. 27. J. P. Davim, A. M. Baptista, ”Relationship between cutting force and PCD cutting tool wear in machining silicon carbide reinforced aluminium”, Journal of Materials Processing Technology, 2000, Vol.103, 417-423. 28. C. A. C. Antonio, J. P. Davim, “Optimal cutting conditions in turning of particulate metal matrix composites based on experiment and a genetic search model”, Composites Part A, Applied Science and Manufacturing, 2002, Vol.33, 213-219. 29. Y. Wang, L. Q. Yang, “Laser-assisted hot cutting characteristics of Al2O3 particle reinforced al-matrix composite”, China Mechanical Engineering, 2003, Vol.4, 344-347. 30. Y. M. Quan, Z. H. Zhou, “The chip formation mechanism of hard particle reinforced metal matrix composites”, Journal of South China University of Technology, 1998, Vol.8, 27-30. 31. J. F. Kelly, M. G. Cotterell, “Minimal lubrication machining of aluminium alloys”, Journal of Materials Processing Technology, 2002, Vol.120, 327–334. 32. P. S. Sreejith, “Machining of 6061 aluminium alloy with MQL, dry and flooded lubricant conditions”, Materials Letters, 2008, Vol.62, 276–278. 33. F. Itoigawa, T. H. C. Childs, T. Nakamura, W. Belluco, “Effects and mechanisms in minimal quantity lubrication machining of aluminum alloy”, Wear, 2006, Vol.260, 339–344. 34. H. A.Kishawy, M. Dumitrescu, E. G. Ng, M. A. Elbestawi, “Effect of coolant strategy on tool performance, chip morphology and surface quality during high-speed machining of A356 aluminum alloy”, International Journal of Machine Tools & Manufacture, 2005, Vol.45, 219–227. 35. 張詮仁,鋁基複合材料切削加工特性之研究,國立台灣大學機械工程學系碩士論文,民國99年。 36. C. Salomon, “Process for the machining of metals and similarly acting materials when being worked by cutting tools”, German patent, 1931, No. 523594. 37. .H. Schulz, T. Moriwaki, “High-Speed Machining”, Annals of CIRP, 1992, Vol. 41 (2), 637-643. 38. S. Ramalingam, P. K. Wright, “Abrasive wear in machining: experiment with material of controlled microstructure”, Journal of Engineering Materials and Technology, 1981, Vol. 103, 151-156. 39. 范光照、張郭益,精密量測,高立圖書有限公司,民國90年,第241-268頁。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45809 | - |
dc.description.abstract | High speed milling of various proportions Al2O3 particles reinforced aluminum-based metal matrix composites (MMCs) under different cutting fluid application conditions is presented in this study. It is found that the built up edge (BUE) which influent the machined surface finish is easily formed in machining of Al2O3 aluminum MMCs. Hence a very high cutting speed together with MQL is recommended to cut this type of MMCs. The flank wear of the cutting tool, machined surface roughness, cutting force and chip formation are investigated during the experiment. The results show that nearly no flank wear occurs but BUE forms easily in machining of 10 wt.% Al2O3 aluminum MMCs, which becomes much fewer as the cutting speed increases. The machining under wet cutting and MQL (minimum quantity lubrication) can significantly reduce BUE to achieve a better surface finish besides lowering cutting force. High speed dry milling of 15 wt.% Al2O3 aluminum MMCs generates few BUE but accompanied with accelerated flank wear with the increasing cutting speed. A better machined surface finish and an increased tool life than those under dry cutting and wet cutting are observed when MQL is applied as the permeation of the oil mist is more effective. On the contrary, the wear n the machining of 20 wt.% Al2O3 aluminum MMCs is so serious that there is little improvement in tool wear and surface finish under MQL condition. In summary, high cutting speed with the aid of MQL is appropriate in machining 10 wt.% and 15 wt.% Al2O3 aluminum MMCs for smaller tool wear and better surface finish as the cutting speed is up to 500 m/min. High speed machining is not suggested in machining of aluminum MMCs with higher content of reinforced particles such as 20 wt.% due to the serious tool wear. Cutting speed that lower than 200 m/min with MQL applied is appropriated in machining of 20 wt.% Al2O3 aluminum MMCs. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:46:31Z (GMT). No. of bitstreams: 1 ntu-100-R98522728-1.pdf: 3622950 bytes, checksum: db163b1481f677c55c96f00fe677660b (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 誌 謝 I
摘 要 II Abstract III 目 錄 V 圖 目 錄 VI 表 目 錄 IX 第一章 緒 論 1 1-1 研究背景與動機 1 1-2 文獻回顧 2 1. 刀具磨耗 3 2. 表面粗糙度 6 3. 切削力 8 4. 切削液之影響 10 1-3 研究目的 12 1-4 本文架構 13 第二章 相關理論 14 2-1 切削理論 14 2-1-1 切屑之形成與分類 14 2-1-2 切削力學 16 2-2 高速切削 18 2-2-1 高速切削的定義 18 2-2-2 高速切削的特性及應用範圍 19 2-3 刀具種類 20 2-4 磨耗理論 23 2-5 表面粗糙度的表示方法 27 第三章 實驗設備與方法 30 3-1 實驗方法 30 3-2 實驗設備 35 3-3 實驗銑削條件之計算 43 第四章 實驗結果與討論 44 4-1 鋁基複合材料於乾切削環境下之結果與探討 44 4-1-1 刀腹磨耗 44 4-1-2 表面粗糙度 48 4-1-3 切削力 52 4-2 鋁基複合材料於不同切削環境下之結果與探討 54 4-2-1 10 wt.% Al2O3鋁基複合材料 55 4-2-2 15 wt.% Al2O3鋁基複合材料 61 4-2-3 20 wt.% Al2O3鋁基複合材料 67 4-3 MQL不同噴油量之探討 72 4-3-1 MQL不同噴油量對加工結果之影響 72 4-3-2 切削液滲透測試 75 4-4 綜合討論 79 第五章 結 論 84 5-1 結論 84 5-2 未來展望 85 參考文獻 86 | |
dc.language.iso | zh-TW | |
dc.title | 鋁基複合材料高速切削加工特性之研究 | zh_TW |
dc.title | A Study of High Speed Milling of Al2O3 Particles Reinforced Aluminum Metal Matrix Composites | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 許巍耀,林憲茂,蔡曜陽 | |
dc.subject.keyword | 高速銑削,鋁基複合材料,刀口積屑,表面粗糙度,最少量潤滑, | zh_TW |
dc.subject.keyword | high speed machining,metal matrix composites,minimum quantity lubrication,flank wear,surface roughness,built-up edge, | en |
dc.relation.page | 90 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-18 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 3.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。