Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45806
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江茂雄(Mao-Hsiung Chiang),陳義男(Yih- Nan Chen)
dc.contributor.authorChi-Min Liaoen
dc.contributor.author廖啟閔zh_TW
dc.date.accessioned2021-06-15T04:46:28Z-
dc.date.available2013-08-10
dc.date.copyright2010-08-10
dc.date.issued2010
dc.date.submitted2010-08-04
dc.identifier.citation[1] Rehfeldt, K., Untersuchungen zur Modellbildung von Windkraftanlagen mit hydrostatischem Treibstrang und deren Regelung auf der Basis der Fuzzy-Logik (in German), VDI Verlag, Reihe 8, Nr.538, 2003.
[2] Wilmshurst, S.M.B., Control strategies for Wind turbines, Wind Eng., Vol. 12(4), pp.236-249, 1988.
[3] Jones, R., Smith, G.A., High quality mains power from variable speed wind turbines, Wind Eng., Vol. 18(1), pp.45-49, 1994.
[4] Freeman, J. B., Balas, M. J., Direct model reference adaptive control of a variable speed horizontal axis wind turbines, Wind Eng., Vol. 22(5), 1998.
[5] Idan, M., Lior, D., Continuously variable speed wind turbine: transmission concept and robust control, Wind Engineering, Vol. 24(3), pp. 151–67, 2000.
[6] Song, Y. D., Dhinakaran, B., Bao, X. Y., Variable speed control of wind turbines using nonlinear and adaptive algorithms, Journal of Wind Engineering and Industrial Aerodynamics 85, pp. 293-308, 2000.
[7] Helduser S., Moderne hydraulische Antriebe und Steuerungen am Beispiel von Kunststoff-Spritgiessmaschinen, O+P Ölhydraulik und Pneumatik 39, No. 10, 1995.
[8] Ruhlicke I., Elektro-hydraulische Antriebssysteme mit drehzahlveränderbarer Doppelpumpe, O+P Ölhydraulik und Pneumatik 41, No. 10, 1997.
[9] Kazmeier B., Feldmann D-G, Ein neues Konzept füreinen kompakten elektrohydraulischen Linearantrieb, Proc. of 1. International Fluid Power Conference, Aachen, Germany, Band 1, pp. 345-358, 1998.
[10] Bildstein A., Application of electro-hydrostatic actuators (EHA) for future aircraft primary flight control, Proc. of the 1. International Fluid Power Conference (1.IFK), Aachen, Germany, Band 1, pp. 93-105, 1998.
[11] Helduser S., Electric-hydrostatic drive – an innovative energy-saving power and motion control system, Proc. of Institution of Mechanical Engineers, Vol. 213, Part I, pp. 427-439, 1999.
[12] Habibi S., Goldenberg A, Design of a new high performance electro-hydraulic actuator, Proc. of the 1999 IEEE/ASME International Conference on Advanced Mechatroics, Atlanta, USA, pp. 227-232, 1999.
[13] Helbig A., Injection moulding machine with electric-hydrostatic drives, Proc. of the 3. International Fluid Power Conference, Aachen, Germany, Vol. 1, pp. 67-82, 2002.
[14] Slotine J.-J. E., Sliding Controller Design for Nonlinear Systems, Int. Journal of Control, Vol. 40, No. 2, pp. 421-433, 1984.
[15] 江茂雄, 液氣壓伺服控制講義, 2007.
[16] 卞松江,吕晓美,相会杰,刘连根,梁 冰,交流励磁变速恒频风力发电系统控制策略的仿真研究,中国电机工程学报Vol.25, No.16, Aug. 2005.
[17] Sanner R. M., Slotine J. J., Gaussian Network for Direct Adaptive Control, IEEE Trans. Neural Networks., vol. 3, pp. 837-863, 1992.
[18] Slotine J.-J. E., Coetsee J. A., Adaptive sliding controller synthesis fornon-linear systems, International Journal of Control, Vol. 43(6), pp. 1631-1651, 1986.
[19] Chin J.-J. E., Sun K. C., Wu A. C. C. , Fu L. C., A Robust MRAC using Variable Structure Adapation for multivariable Plants, Automatica, Vol. 32, pp. 833-848, 1996.
[20] Slotine J.-J. E., Sastry S. S., Tracking Control of Non-Linear Systems UsingSliding Surface with Application to Robot Manipulators, International Journal of Control, Vol. 38, pp. 465-492, 1983.
[21] Ioannou P. A., Sun J., Robust Adaptive Control, Prentice Hall, 1996.
[22] Whitaker H. P., Yamron J., Kezer A., Design of Model Reference Adaptive Control Systems for Aircraft, Report R-164, Instrumentation Laboratory, M. I.T. Press, Cambridge, Massachusetts, 1958.
[23] Mamdani, E. H., Assilian, S., A Fuzzy Logic Controller for a Dynamic Plant, Int. J. Man, Maching Study, 7, pp. 1-13, 1975.
[24] Kim, S. W., Lee, J. J., Design of a fuzzy controller with fuzzy sliding surface, Fuzzy Sets & Systems, vol. 71, no. 3, pp. 359-67, 1995.
[25] Tzafestas, S. G., Rigatos, G. G., A simple robust sliding-mode fuzzy-logic controller of the diagonal type, Journal of Intelligent & Robotic Systems, vol. 26, no. 3-4, pp. 353-388, 1999.
[26] Wu, J. C., Liu, T. S., A sliding-mode approach to fuzzy control design, IEEE Trans. Control Systems Technology, vol. 4, no. 2, 141-151, 1996.
[27] Procky T. J., Mamdani E. H., A linguistic Self-Organizing Process Controller, Automatica, Vol. 5, pp. 15-30, 1979.
[28] Lu Y., A self-organizing fuzzy sliding-mode controller design for a class of nonlinear servo systems, IEEE Transactions on Industrial Electronics Vol. 141. No. 5, pp. 492-495, 1994.
[29] Chiang M. H., Chien Y. W., Parallel control of velocity control and energy-saving control on a hydraulic valve controlled system using self-organizing fuzzy sliding mode control, JSME International Journal, Series C, Vol. 46, No. 1, pp. 224-231, 2003.
[30] Liu, M. H., The Simulation and Analysis of Mechatronic Control Systems for Wind Turbines, July, 2008.
[31] Boukhezzar B. , Siguerdidjane H., Maureen Hand M., Nonlinear Control of Variable-Speed Wind Turbines for Generator Torque Limiting and Power Optimization, Journal of Solar Energy Engineering, Vol. 128, Issue 4, pp. 516-530, November, 2006.
[32] Lin Z., Guo Q., Adjustable-Pitch and Variable-Speed Control of Wind Turbines Using Nonlinear Algorithm, ICEMS 2003. Sixth International Conference, Vol. 1, pp. 270-273, Nov. 2003.
[33] 桂人傑, 變速風機之控制系統, 精密製造與新興能源機械技術特輯, 2006.
[34] 魏貞元, 永磁同步發電機功率控制器之研製與模擬,國立成功大學電機工程研究所碩士論文, 2007.
[35] 江茂雄, 液氣壓伺服控制講義, 2007.
[36] Sanner R. M., Slotine J. J., Gaussian Network for Direct Adaptive Control, IEEE Trans. Neural Networks., vol. 3, pp. 837-863, 1992.
[37] Wang L. X., Stable Adaptive Fuzzy Control of Nonlinear Systems, IEEE Trans. Fuzzy System 1, pp. 146-155, 1993.
[38] Palm R., Sliding Mode Fuzzy Control, Automatica, vol. 30, pp. 1429–1437, 1994.
[39] Hwang G. C., Chang S., A Stability Approach to Fuzzy Control Design for Nonlinear System, Fuzzy Sets Syst., vol. 48, pp.279–287, 1992.
[40] Isidori A., Nonlinear Control Systems, 2nd ed. Berlin, Germany: Springer- Verlag, 1989.
[41] Slotine J. J. E., Li W., Applied Nonlinear Control, Englewood Cliffs, New Jersey: Prentice-Hall, 1991.
[42] Slotine. J. E. and Coetess. J. A., Adaptive sliding controller synthesis for nonlinear systems, Int. J. Control, Syst., Vol.43(6), pp. 1631-1651, 1986.
[43] Lee H., Tomizuka M., Robust adaptive control using a universal approximator for SISO nonlinear systems, IEEE Trans. Fuzzy Syst., vol. 8, pp. 95-106, Feb. 2001.
[44] Lin. C. M., Research on Variable Pitch Control System for Wind Turbine Blades, June, 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45806-
dc.description.abstract本文主旨在於發展大型風力發電機之創新變螺距系統以及液靜壓傳動變速控制之應用,此系統藉由變轉速泵控液壓伺服系統所驅動。為了解變螺距控制系統之實際運轉情形,設計並建立整部2MW風力發電機之液壓變螺距控制測試系統,其子系統包含創新變螺距控制機構、變轉速泵控液壓伺服系統、干擾系統、發電機系統及PC-Based控制系統。變轉速泵控液壓伺服系統包含一個AC伺服馬達、一個定排量之液壓幫浦、兩支差動缸以及液壓管路,高響應與高效率等特性使其能夠適用於大型風力機組之中。此外,為了實現此創新之變螺距控制系統,本文將其結合現代控制理論-具自調式模糊滑動補償之適應性模糊控制器。最後,實際的軌跡追蹤實驗包含五階軌跡、正弦軌跡與不同風速下之隨機軌跡,且加入不同負載與不同控制器之比較,使得本研究發展之創新液壓變螺距控制系統之優劣得到更完善的分析與了解。
另外,本文也加入液靜壓傳動系統應用於2MW大型風力發電機之模擬,藉由對液靜壓傳動系統的分析與研究,將來使用液靜壓傳動系統來取代傳統齒輪箱的諸多優點是可以被期待的。
zh_TW
dc.description.abstractThe thesis aims to develop a novel pitch control system of a large wind turbine driven by a variable-speed pump-controlled hydraulic servo system. In order to realize practical experiments of the pitch control, the full-scale test rig of the hydraulic pitch control system of a 2 MW wind turbine’s blade, including a novel mechanism of pitch control, a variable-speed pump-controlled hydraulic servo system, a disturbance system and a PC-Based control system, are designed and set up. The variable-speed pump-controlled hydraulic servo system, which contains an AC servo motor, a constant displacement hydraulic piston pump, two differential hydraulic cylinders and hydraulic circuits, performs high response and high energy efficiency, such that it is suitable for the applications in wind turbines. Besides, in order to implement the pitch control in the proposed novel pitch control system, the adaptive fuzzy controller with self-tuning fuzzy sliding-mode compensation (AFC-STFSMC) is developed to design the pitch controller. Finally, the developed variable-speed pump-controlled hydraulic servo system has been realized and verified for the path tracking control of the pitch control of the wind turbines by practical experiments in the full-scale test rig under different path profiles, load torques, and random wind speed.
The simulation results of the hydrostatic transmission varable speed control system which is used on 2 MW wind turbines are implemented in this research. Through analyzing of the simulations, the hydrostatic transmission system can replace the gear box and has many advantages used in large wind turbines.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:46:28Z (GMT). No. of bitstreams: 1
ntu-99-R97525020-1.pdf: 1546314 bytes, checksum: a544dfbb37da2f02710b213fa2a32cfd (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsContents
誌謝 I
ABSTRACT II
中文摘要 III
Contents IV
List of Figures VI
List of Tables IX
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Literature Review 1
1.2.1 Wind turbine systems 1
1.2.2 Hydraulic pump-controlled system 2
1.2.3 Control theories 3
1.2.4 Motivation and objective of the research 4
1.3 Thesis Organization 5
Chapter 2 Layout of Novel Pitch Control System 7
2.1 Conventional variable pitch control system 7
2.2 The mechanisms and equipments of novel variable pitch control system 8
2.2.1 Novel variable pitch control system 8
2.2.2 Test rig layout of the novel pitch control system 8
2.2.3 Angular sensor and pressure sensor 12
2.2.4 PC-based control system 13
2.2.5 Disturbance system 14
Chapter 3 Modeling of Wind Turbine 17
3.1 Modeling of the aerodynamic of blade 18
3.2 Modeling of the gear box 18
3.3 The novel hydraulic pitch control system 20
3.3.1 Modeling of the variable-speed hydraulic pump- controlled system 20
3.3.2 The mechanism of the variable pitch control system 23
3.4 The generator system 24
3.4.1 Modeling of the permanent magnet synchronous generato 25
3.6 Modeling of the disturbance system 29
3.7 Modeling of variable rotational speed hydraulic pump-controlled system for controller design 31
3.7.1 Modeling of AC servo motor 31
3.7.2 Modeling of Constant displacement piston pump 31
3.7.3 Modeling of The controlled cylinders 32
3.7.4 State Equations of Variable Rotational Speed Hydraulic Pump-controlled System 33
Chapter 4 Control Theory and Controller Design 35
4.1 Control theory of the pitch control system 35
4.1.1 Single-input Fuzzy Control 35
4.1.2 Sliding mode control 37
4.1.3 Fuzzy Sliding Mode Control 37
4.1.4 Adaptive Fuzzy Controller with Self-tuning Fuzzy Sliding-Mode Compensation 39
4.2 Control strategy of the wind turbine 44
Chapter 5 Experiments and Simulations of Novel Variable Pitch Control System 45
5.1 Experiment without disturbance using different controllers 46
5.1.1 Experiment without disturbance using fuzzy sliding- mode controller 47
5.1.2 Experiment without disturbance using AFC-STFSMC 53
5.1.3 Comparison of the experimental results using different controllers 59
5.2 Experiment with disturbance using different controllers 60
5.2.1 Experiment with disturbance using fuzzy sliding-mode controller 61
5.2.2 Experiment with disturbance using AFC-STFSMC 71
5.2.3 Comparison of the experimental results using different controllers under different disturbance 81
5.3 Experiment and simulation of pitch control under random wind speed 83
Chapter 6 Hydrostatic Transmission Variable Rotational Speed Control 85
6.1 Introduction of Hydrostatic Transmission System 85
6.2 Modeling of Hydrostatic Transmission System 87
6.3 Simulations of a 2 MW Wind Turbine 88
6.3.1 Simulations of 2MW Wind Turbine Using HST and Gear Box 89
6.3.2 Simulations of 2MW Wind Turbine Using HST 102
Chapter 7 Conclusions 105
References 107
dc.language.isoen
dc.title2MW風力發電機之葉片變螺距控制及液靜壓傳動變速控制之研究zh_TW
dc.titleResearch on Variable Pitch Control of Blades and Hydrostatic Transmission Variable Rotational Speed Control for a 2MW Wind Turbineen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee施明璋(Ming-Chang Shih),吳聰能,郭振華
dc.subject.keyword風力發電機,變螺距控制系統,變轉速泵控液壓伺服系統,軌跡追蹤,具自調式模糊滑動補償之適應性模糊控制器,液靜壓傳動系統,zh_TW
dc.subject.keywordwind turbine,pitch control,variable-speed pump-controlled hydraulic servo system,path tracking control and adaptive fuzzy controller with self-tuning fuzzy sliding-mode compensation,hydrostatic transmission,variable speed control,en
dc.relation.page110
dc.rights.note有償授權
dc.date.accepted2010-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
1.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved