Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45771
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇國棟(Guo-Dung Su)
dc.contributor.authorHsin-Ta Hsiehen
dc.contributor.author謝欣達zh_TW
dc.date.accessioned2021-06-15T04:45:52Z-
dc.date.available2012-01-26
dc.date.copyright2010-08-06
dc.date.issued2010
dc.date.submitted2010-08-06
dc.identifier.citationChapter 0
[1] DLP http://www.dlp.com/.
[2] mirasol http://www.mirasoldisplays.com/.
[3] H. Peng, Y. L. Ho, X.-J. Yu, M. Wong, and H.-S. Kwok, 'Coupling efficiency enhancement in organic light-emitting devices using microlens array - Theory and experiment,' IEEE/OSA Journal of Display Technology, vol. 1, pp. 278-282, 2005.
[4] E. Hecht, Optics, 4th ed.: Addison Wesley, 2001.
Chapter 1
[1] E. Hecht, Optics, 4th ed.: Addison Wesley, 2001.
[2] F. Zamkotsian, V. Conedera, A. Liotard, A. Schroeder, N. Fabre, H. Camon, and P. Lanzoni, 'Polymer-based micro-deformable mirror for adaptive optics applications,' USA, 2004, pp. 144-54.
[3] C.-H. Li, H.-T. Hsieh, and G.-D. J. Su, 'A fiber variable optical attenuator made by a large-stroke polymeric deformable mirror,' IEEE Photonics Technology Letters, vol. 21, pp. 1432-1434, 2009.
[4] H.-T. Hsieh, H.-C. Wei, M.-H. Lin, W.-Y. Hsu, Y.-C. Cheng, and G.-D. J. Su, 'Thin autofocus camera module by a large-stroke micromachined deformable mirror,' Optics Express, vol. 18, pp. 11097-11104, 2010.
[5] K. Seidl, J. Knobbe, and H. Gruger, 'Design of an all-reflective unobscured optical-power zoom objective,' Applied Optics, vol. 48, pp. 4097-4107, 2009.
[6] S. Sinzinger and J. Jahns, Microoptics, 2nd ed.: Wiley-VCH, 2003.
[7] R. F. Fischer and B. Tadic, Optical System Design: McGraw-Hill, 2000.
[8] H. Wada, D. Lee, S. Zappe, U. Krishnamoorthy, and O. Solgaard, 'Snap Down Voltage of a Fast-Scanning Micromirror with Vertical Electrostatic Combdrives,' Japanese Journal of Applied Physics, Part 2: Letters, vol. 43, pp. L284-L286, 2004.
[9] S. J. Lukes, P. A. Himmer, E. J. Moog, S. R. Shaw, and D. L. Dickensheets, 'Feedback stabilized deformable membrane mirrors for focus control,' San Jose, CA, United states, 2009.
[10] D. Maier-Schneider, J. Maibach, and E. Obermeier, 'New analytical solution for the load-deflection of square membranes,' Journal of Microelectromechanical Systems, vol. 4, pp. 238-241, 1995.
Chapter 2
[1] E. Hecht, Optics, 4th ed.: Addison Wesley, 2001.
[2] K. Seidl, J. Knobbe, and H. Gruger, 'Design of an all-reflective unobscured optical-power zoom objective,' Applied Optics, vol. 48, pp. 4097-4107, 2009.
[3] OKO tech http://www.okotech.com/.
[4] T.-Y. Chen, C.-W. E. Chiu, and G.-D. J. Su, 'A large-stroke MEMS deformable mirror fabricated by low-stress fluoropolymer membrane,' IEEE Photonics Technology Letters, vol. 20, pp. 830-832, 2008.
[5] R. T. Chen, H. Nguyen, and M. C. Wu, 'A high-speed low-voltage stress-induced micromachined 2 x 2 optical switch,' IEEE Photonics Technology Letters, vol. 11, pp. 1396-1398, Nov 1999.
[6] O. Tabata, K. Kawahata, S. Sugiyama, and I. Igarashi, 'Mechanical property measurements of thin films using load-deflection of composite rectangular membranes,' Sensors and actuators, vol. 20, pp. 135-141, 1989.
[7] D. Maier-Schneider, J. Maibach, and E. Obermeier, 'New analytical solution for the load-deflection of square membranes,' Journal of Microelectromechanical Systems, vol. 4, pp. 238-241, 1995.
[8] J. Y. Pan, P. Lin, F. Maseeh, and S. D. Senturia, 'Verification of FEM analysis of load-deflection methods for measuring mechanical properties of thin films,' Technical Digest. IEEE Solid-State Sensor and Actuator Workshop, 1990, pp. 70-73.
[9] R. F. Fischer and B. Tadic, Optical System Design: McGraw-Hill, 2000.
[10] H.-S. Yoon and T.-H. Park, 'A fast focusing method for CCM autofocusing handlers, 'International Journal of Advanced Manufacturing Technology, vol. 43, pp. 287-293, 2009.
[11] C. Bonomo, L. Fortuna, P. Giannone, and S. Graziani, 'A method to characterize the deformation of an IPMC sensing membrane,' 2005, pp. 146-154.
Chapter 3
[1] R. C. Gutierrez, T. K. Tang, R. Calvet, and E. R. Fossum, 'MEMS digital camera,' Proc. SPIE 6502, paper36, 1-8, 2007.
[2] S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128-1130, 2004.
[3] H. Ren, Y. Fan, S. Gauza and S. Wu, “Tunable-Focus Cylindrical Liquid Crystal Lens”, Japanese Journal of Applied Physics, 43, 652–653, 2004.
[4] J. Wang, T. Chen, Y. Chien, and G. Su,” Miniature Optical Autofocus Camera by Micromachined Fluoro-polymer Deformable Mirror “, Opt. Express 17,6268-6274 ,2009.
[5] D. Wick, “Active Optical Zoom System,” US patent 6,977,777 ,2005.
[6] W. Smith, Modern Optical Engineering: the design of optical systems, 2nd, (McGraw-Hill, 1990), pp.436.
[7] E. Hecht, Optics, 4nd (Addison Wesley, 2001).
[8] Boston Micromachines Corporation, http://www.bostonmicromachines.com/.
[9] V. T. Srikar, and S. M. Spearing, 'Materials selection for microfabricated electrostatic actuators,' Sensors and Actuators, A: Physical 102, 279-285 ,2003.
[10] K. Seidl, J. Knobbe, and H. Gruger, 'Design of an all-reflective unobscured optical-power zoom objective,' Applied Optics 48, 4097-4107 ,2009.
[11] J. Wang, T. Chen, C. Liu, C. Chiu, and G. Su, “Polymer Deformable Mirror for Optical Auto Focusing,” ETRI Journal, 29, 817-819 ,2007.
[12] C. W. Liu, H. T. Hsieh, and G. D. Su, “Compact Reflective Type Auto-focusing Imaging System with Polymer Deformable Mirror,” Proceeding of 6thInternational Conference on Optics-photonics Design & Fabrication, 10PS-044, June 2008.
[13] M. Lin, H. Hsieh, W. Hsu, Y. Chen, C. Wu and Guo-Dung J. Su, “Auto-focus imaging systems with MEMS deformable mirrors,” SPIE Current Developments in Lens Design and Optical Engineering X, Vol. 7428, August 2009.
Chapter 4
[1] H.-P. D. Shieh, Y.-P. Huang, and K.-W. Chien, 'Micro-optics for liquid crystal displays applications,' Journal of Display Technology 1, 62-76, 2005.
[2] H. Peng, Y. L. Ho, X.-J. Yu, M. Wong, and H.-S. Kwok, 'Coupling efficiency enhancement in organic light-emitting devices using microlens array - Theory and experiment,' Journal of Display Technology 1, 278-282, 2005.
[3] G. Y. Yoon, T. Jitsuno, M. Nakatsuka, and S. Nakai, 'Shack Hartmann wave-front measurement with a large F-number plastic microlens array,' Applied Optics 35, 188-192, 1996.
[4] D. A. Baillie and J. E. Gendler, 'Zero-space microlenses for CMOS image sensors: Optical modeling and lithographic process development,' Proc. SPIE 5377(2), 953-959, 2004.
[5] H. Toshiyoshi, G.-D. J. Su, J. LaCosse, and M. C. Wu, 'A surface micromachined optical scanner array using photoresist lenses fabricated by a thermal reflow process,' Journal of Lightwave Technology 21, 1700-1708, 2003.
[6] H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, 'Comparing glass and plastic refractive microlenses fabricated with different technologies,' Journal of Optics A: Pure and Applied Optics 8, 407-429, 2006.
[7] D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, 'Manufacture of microlenses by melting photoresist,' Measurement Science & Technology 1, 759-766, 1990.
[8] H. Yang, C.-K. Chao, M.-K. Wei, and C.-P. Lin, 'High fill-factor microlens array mold insert fabrication using a thermal reflow process,' Journal of Micromechanics and Microengineering 14, 1197-1204, 2004.
[9] H. N. Hyun, L. P. Jeong, S. C. Jae, and G. L. Jeong, 'The optimization of zero-spaced microlenses for 2.2um pixel CMOS image sensor,' Proc. SPIE 6520(3), 652034, 2007.
[10] M.-K. Wei, I. L. Su, Y.-J. Chen, M. Chang, H.-Y. Lin, and T.-C. Wu, 'The influence of a microlens array on planar organic light-emitting devices,' Journal of Micromechanics and Microengineering 16, 368-374, 2006.
[11] H. Kwon, Y. Yee, C.-H. Jeong, H.-J. Nam, and J.-U. Bu, 'A high-sag microlens array film with a full fill factor and its application to organic light emitting diodes,' Journal of Micromechanics and Microengineering, 18, 2008.
[12] Stefan Sinzinger and Jurgen Jahns, 'Refractive Microoptics,' Chap. 5 in Microoptics 2e, Wiley-VCH, pp. 94-95, 2003.
Chapter 5
[1] G. Y. Yoon, T. Jitsuno, M. Nakatsuka, and S. Nakai, 'Shack Hartmann wave-front measurement with a large F-number plastic microlens array,' Applied Optics, vol. 35, pp. 188-192, 1996.
[2] H. Peng, Y. L. Ho, X.-J. Yu, M. Wong, and H.-S. Kwok, 'Coupling efficiency enhancement in organic light-emitting devices using microlens array - Theory and experiment,' IEEE/OSA Journal of Display Technology, vol. 1, pp. 278-282, 2005.
[3] P. Jui-Wen, W. Chin-Ming, L. Hsiao-Chin, S. Wen-Shin, and C. Jenq-Yang, 'Homogenized LED-illumination using microlens arrays for a pocket-sized projector,' Optics Express, vol. 15, pp. 10483-91, 2007.
[4] H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, 'Comparing glass and plastic refractive microlenses fabricated with different technologies,' Journal of Optics A: Pure and Applied Optics, vol. 8, pp. 407-429, 2006.
[5] D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, 'Manufacture of microlenses by melting photoresist,' Measurement Science & Technology, vol. 1, pp. 759-766, 1990.
[6] M. Severi and P. Mottler, 'Etching selectivity control during resist pattern transfer into silica for the fabrication of microlenses with reduced spherical aberration,' Optical Engineering, vol. 38, pp. 146-50, 1999.
[7] S. Haselbeck, H. Schreiber, J. Schwider, and N. Streibl, 'Microlenses fabricated by melting a photoresist on a base layer,' Optical Engineering, vol. 32, pp. 1322-4, 1993.
[8] P. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, and S. Haselbeck, 'Design, fabrication and testing of microlens arrays for sensors and microsystems,' Pure and Applied Optics, vol. 6, pp. 617-36, 1997.
[9] S. Sinzinger and J. Jahns, Microoptics, 2nd ed.: Wiley-VCH, 2003.
[10] E. Hecht, Optics, 4th ed.: Addison Wesley, 2001.
[11] R. F. Fischer and B. Tadic, Optical System Design: McGraw-Hill, 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45771-
dc.description.abstract在本篇論文中,我們利用微製程技術發展並製作一個有機可形變面鏡 (organic deformable mirror) 和一個微透鏡陣列 (microlens array),並展現整合此二元件和一般光學元件後,用來發展微小光學系統的潛力。
發展有機可形變面鏡的過程中,我們利用聚亞醯銨 (polyimide) 來製作一具高度可撓性的薄膜,使薄膜具有低的楊氏系數 (Young’s modulus, 小於10 GPa ) 和低的殘餘應力 (residual stress, 藉由挑選和基板之熱膨脹係數符合的薄膜材質可小於5 MPa),薄膜表面鍍有鋁用以反射或聚焦入射的光線,藉由施加在薄膜(鋁)和下電極間的電壓,可使此有機可形變面鏡因為靜電力吸引而下凹產生曲率,並藉此電壓來控制其度數 (diopter, m-1),製作出來的有機可形變面鏡有低驅動電壓和大位移量的特性 (約只需150伏特的電壓,即可達到20-diopters),這使得此有機可形變面鏡有些特殊的應用,例如,在本篇論文中,我們用它製作一兩百萬畫素的薄型自動對焦鏡頭模組;另外,我們也推導出一個解析的模型來預測,當使用不同材料來做有機可形變面鏡時,特定鏡面度數下所需施加電壓的大小。除此之外,我們利用馬達驅動的位移平台、顯微鏡和自動對焦的演算法 (Tenengrad) ,發展了一套自動系統,用以量測製作出來的有機可形變面鏡之楊氏系數和殘餘應力。
在微透鏡陣列的發展過程中,我們提出了兩個製程技術用以提升微透鏡陣列的特性。其一是“邊界局限法”,此方法可以製作出同時具有高填充率和小半徑曲率特性的微透鏡陣列。實驗結果顯示,每個微透鏡的高度是22 μm直徑是48 μm而間距只有2 μm,我們也可以藉由這個方式來製作具有隨機曲率分布的微透鏡陣列;另一技術是透過PDMS覆蓋層來增加微透陣列的焦距,一般來說,由熱回熔(thermal reflow) 技術做出的微透鏡陣列,因受限於熔化光阻和基板間的接觸角,焦距長度有一定的限制,此技術可使直徑240 μm的微透鏡之焦長延長至2.1 mm (約原本的三倍),這兩個方法使我們在設計微透鏡時有更多的彈性。
最後,我們希望這篇文章可以啟發相關的研究人員,並對後續的發展有些許貢獻。
zh_TW
dc.description.abstractWe demonstrated the potential of wafer level optical components for compact optical systems by developing two micro optical components: organic deformable mirror (DM) and microlens arrays (MLA) which was fabricated by MEMS technology.
In the development of organic deformable mirror, we fabricated a highly flexible polyimide membrane which has low Young’s modulus (<10 GPa) and low residual stress (<5 MPa, by choosing the CTE of membrane material, which matches to a silicon substrate). The incident light is reflected or focused by the Aluminum coating layer on the membrane. The optical power (diopter, m-1) of DM is curved and controlled by the gap-closing force results from the applied voltage between membrane (Aluminum coating) and bottom electrode pad. This polymer DM has advantages on large stroke and low applied voltage (~150 V achieved 20-diopters, lower voltage is possible). The fabricated DM could be integrated with other optical components for imaging applications. We show a thin 2M-pixels camera module with autofocus (AF) facility provided by DM rather than voice coil motor (VCM). The object position of clear image varies from 4 cm to infinity. In addition, we derived an analytic model, which predicts the optical power with required applied voltage according the material properties of membrane. Besides, an automatic system for measurement on Young’s modulus and residual stress was developed and implemented by a motorized stage, optical microscope, and image processing algorithm (Tenengrad).
In microlens process, we developed two fabrication techniques. One is “boundary-confined method” which achieves high fill factor and small radius of curvature or high numerical aperture (NA) simultaneously. The height of microlens is 22 μm and the diameter is 48 μm, and the gap is 2 μm. In addition, the various curvature distribution (VCD) over microlenses in a MLA could be made based on this method. The other technique in microlens process extends the focal length of microlens by a covering Polydimethylsiloxane (PDMS) layer. The focal length of microlens with 240 μm diameter is extended to around 2.1 mm or 3 times larger than origin. It is longer than the maximum focal length of microlens, which is limited by the contact angle of photoresist and substrate in thermal reflow process. Therefore, designer could have more flexibility on the MLA design for specific applications. Finally, we believe this integration on MEMS technology and optical systems could inspire the researchers to develop compact and convenient optical systems which might benefit to the human.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:45:52Z (GMT). No. of bitstreams: 1
ntu-99-D95941004-1.pdf: 2657200 bytes, checksum: 1f708b99e2968cc4301a7266d27de85d (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents論文口試委員審定書
致謝 ............ I
摘要 ............ II
Abstract ............ III
Contents ............ V

Chpater 0 Introduction ............ 1
0.1 General Introduction ............ 1
0.2 Dissertation Organization ............ 2


Part I

Chpater 1 Organic MEMS Deformable Mirror ............ 5
1.1 Introduction ............ 7
1.2 Fabrication of Deformable Mirror ............ 9
1.3 Theory and Design ............ 11
1.3.1 Optical Power ............ 11
1.3.2 Pull-in Phenomenon ............ 14
1.3.3 The Analytic Model ............ 20
1.4 Results and Discussion ............ 23
1.5 Summary ............ 27
References ............ 27

Chpater 2 Non-destructive Measurement of Residual Stress and Young’s Modulus on MEMS Deformable Mirror by Optical Microscope ............ 29
2.1 Introduction ............ 30
2.2 Fabrication of Samples ............ 32
2.3 Measurement and Automation ............ 35
2.4 Results and Discussion ............ 43
2.5 Summary ............ 46
References ............ 47

Chpater 3 Thin Autofocus Camera Module by a Large-Stroke Deformable Mirror ............ 49
3.1 Introduction ............ 50
3.2 Optical System Design ............ 52
3.3 Fabrication and Package ............ 59
3.4 Experimental Results ............ 63
3.5 Summary ............ 67
References ............ 68

Part II

Chpater 4 A Novel Boundary-Confined Method for High Numerical Aperture Microlens Arrays Fabrication ............ 70
4.1 Introduction ............ 71
4.2 Boundary-Confined Method and Design ............ 73
4.3 Fabrication Process ............ 79
4.4 Result and Discussion ............ 82
4.5 Summary ............ 89
References ............ 90

Chpater 5 Design and Fabrication in Long Focal Length Microlens Arrays ............ 92
5.1 Introduction ............ 93
5.2 Design and Simulation ............ 95
5.3 Fabrication Process and Result Discussion ............ 99
5.4 Summary ............ 107
References ............ 108


Chpater 6 Conclusions and Future Work ............ 110
6.1 Conclusions ............ 111
6.2 Suggestion for Future Work ............ 113
6.2.1 Convex Deformable Mirror with Negative Optical Power ............ 113
6.2.1 Microlens Array with Various Curvature Distribution ............ 114

Publication list ............ 116
dc.language.isoen
dc.subject手機像機鏡頭模組zh_TW
dc.subject有機可行變面鏡zh_TW
dc.subject微透鏡陣列zh_TW
dc.subject自動對焦zh_TW
dc.subjectlow NAen
dc.subjectdeformable mirroren
dc.subjectlarge strokeen
dc.subjectmembraneen
dc.subjectpolyimideen
dc.subjectautofocusen
dc.subjectcamera moduleen
dc.subjectresidual stressen
dc.subjectYoung’s modulusen
dc.subjectmicrolens arraysen
dc.subjectfill-factoren
dc.subjectfocal lengthen
dc.title微製程技術與光學系統之整合設計與應用:有機可形變面鏡與微透鏡陣列zh_TW
dc.titleDesign and Fabrication of Compact Optical Devices:Organic Deformable Mirror and Microlens Arraysen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee林晃嚴(Hoang-Yan Lin),蔡睿哲(Jui-che Tsai),何志浩(Jr-Hau He),許巍耀(Wei-Yao Hsu)
dc.subject.keyword有機可行變面鏡,微透鏡陣列,自動對焦,手機像機鏡頭模組,zh_TW
dc.subject.keyworddeformable mirror,large stroke,membrane,polyimide,autofocus,camera module,residual stress,Young’s modulus,microlens arrays,fill-factor,focal length,low NA,en
dc.relation.page117
dc.rights.note有償授權
dc.date.accepted2010-08-06
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
2.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved