請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45765完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱士維(Shi-Wei Chu) | |
| dc.contributor.author | Chien-Hung Lee | en |
| dc.contributor.author | 李建宏 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:45:47Z | - |
| dc.date.available | 2010-08-09 | |
| dc.date.copyright | 2010-08-09 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-05 | |
| dc.identifier.citation | [1].J. N. Eckstein, A. I. Ferguson, and T. W. Hansch, “High-Resolution Two-Photon Spectroscopy with Picosecond Light Pulses”, Phys. Rev. Lett. 40, 847 (1978).
[2].D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser”, Optics Letters 16 NO.1, 42-44 (1991) [3].Jun Y and Steven T. Cundiff, “Femtosecond Optical Frequency Comb Principle Operation” (2005) [4].T. Udem, J. Reichert, R. Holzwarth, and T. W. Hansch, “Accurate measurement of large optical frequency differences with a mode-locked laser”,Opt. Lett. 24, 881 (1999). [5].D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall,and S. T. Cundiff, Science 288, 635-639 (2000); S. A. Diddams, D. J. Jones, J.Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T.Udem, and T. W. Hansch, “Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb”,Phys. Rev. Lett. 84, 5102 (2000). [6].Veronika Tsatourian, Helen S. Margolis, Giuseppe Marra, Derryck T. Reid, and Patrick Gill, “Common-path self-referencing interferometer for carrier-envelope offset frequency stabilization with enhanced noise immunity”, Optics Letters 35 NO.8, 1209-1211 (2010) [7].Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hansch, “Absolute Optical Frequency Measurement of the Cesium D1 Line with a Mode-Locked Laser”, Phys. Rev. Lett. 82 NO.18, 3568-3571 (1999) [8].Michael J. Thorpe, Kevin D. Moll, R. Jason Jones, Benjamin Safdi, Jun Ye, “Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection”, SCIENCE 311, 1595-1599 (2006) [9].MARKUS KREs1, TORSTEN L ‥OFFLER, MARK D. THOMSON, REINHARD D ‥ORNER, HARTMUT GIMPEL, KARL ZROST, THORSTEN ERGLER, ROBERT MOSHAMMER, UWE MORGNER, JOACHIM ULLRICH, AND HARTMUT G. ROSKOS , “Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy”, nature physics 2, 327-331(2006) [10].Scott A. Diddams1, Leo Hollberg1 & Vela Mbele , “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb”, nature 445, 627-630 (2007) [11].S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, and J. Ye, “New Limits on Coupling of Fundamental Constants to Gravity Using 87Sr Optical Lattice Clocks”, Phys. Rev. Lett 100,140801 (2008) [12].Stefan Witte, Roel Th. Zinkstok, Wim Ubachs, Wim Hogervorst, Kjeld S. E. Eikema , “Deep-Ultraviolet Quantum Interference Metrology with Ultrashort Laser Pulses”, SCIENCE 37, 400-403 (2005) [13].Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hansch, “Absolute Optical frequency Measurement of the Cesium D1 Line with a Mode-Locked Laser”, Phys. Rev. Lett. 82 NO.18, 3568-3571 (1999) [14].Jun Ye, Long Sheng Ma, and John L. Hall, “Molecular Iodine Clock”, Phys. Rev. Lett. 87 NO.27, 270801 (2001) [15].吳建明, “銫原子 6S-8S 雙光子躍遷穩頻半導體雷射” (民國九十五年七月) [16].陳宥寰, “腔內式822nm銫原子穩頻半導體雷射” [17].Lecture note of W. Y. Cheng for the summer school in IAMS [18].李明翰, “飛秒光頻梳的改進” (民國九十七年七月) [19].R. Ramaswami, K. Sivarajan, Optical Networks - A Practical Perspective, 1998 [20].Lecture note of W. Y. Cheng for the summer school in IAMS [21].黃信偉, “以銫原子雙光子超精細躍遷為標準之光梳子雷射” (民國九十四年十二月) [22].'Construction of a femtosecond mode-locked laser”, [23].Francois Salin and Alain Brun, “Dispersion compensation for femtosecond pulses using high-index prisms”, J. Appl. Phys. 61, 4736 (1987) [24].Lecture note of Ultrafast Optics, MIT [25].G. Cerullo, S. De Silvestri, V. Magni, and L. Pallaro, “Resonators for Kerr-lens mode-locked femtosecond Ti:sapphire lasers”, Optics Letters 19 NO.11, 807-809 (1994) [26].“Cavity-dumper femtosecond Titanium:sapphire laser: The light source for non-linear optical spectroscopy” [27].Th. Udem, R. Holzwarth & T. W. Hansch, “Optical frequency metrology”, Nature 416,233-237 (2002) [28].John M. Dudley, Goery Genty, and Stephane Coen, “Supercontinuum generation in photonic crystal fiber”, Reviews of Modern Physics 87, 1135-1184 (2006) [29].P. Fendel, S. D. Bergeson, Th. Udem, and T. W. Hansch, “Supercontinuum generation in photonic crystal fiber”, Reviews of Modern Physics 78, 1135-1184 (2006) [30].J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth,P. St. J. Russell, and G. Korn, “Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers”, Phys. Rev. Lett. 88 NO.17, 173901 (2002) [31].M. G. Banaee and Jeff F. Young, “High-order soliton breakup and soliton self-frequency shifts in a microstructured optical fiber”, J. Opt. Soc. Am. B 23 NO.7, 1484-1489 (2006) [32].Robert W. Boyd, “Nonlinear Optics” [33].W. Y. Cheng, T. S. Wu, S. Y. Huang, S. Y. Lin, and C. M. Wu, ”Stabilizing the frequency of femtosecond Ti:sapphire comb laser by a novel scheme”, Appl. Phys. B 92, 13-18 (2008) [34].Herwig W. Kogelnik, Erich P. Ippen, Andrew Dienes, and Charles V. Shank, “Astigmatically Compensated Cavities for CW Dye Lasers”, IEEE Journal of Quantum Elecronics QE-8, NO. 3, 373-379 (1972) [35].Montian TIANPRATEEP, Junji TADA and Fumihiko KANNARI, “Influence of Polarization and Pulse Shape of Femtosecond Initial Laser Pulses on Spectral Broadening in Microstructure Fibers”, OPTICAL REVIEW 12, No.3, 179-189 (2005) [36].Shoichi Yamaguchi and Hiro-O Hamaguchi, “Convenient Method of Measuring the Chirp Structure of Femtosecond White-Light Continuum Pulses”, Applied Spectroscopy 49 NO.10, 1513-1515 (1995) [37].Tze-An Liu, Ren-Huei Shu, and Jin-Long Peng, “TWO ADVANCED APPROACHES FOR A SEMI-AUTOMATIC, OCTAVE-SPANNING OPTICAL FREQUENCY COUNTER”, IEEE (2008) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45765 | - |
| dc.description.abstract | 在精密量測中光的頻率標準是很重要的,無論在從事基礎科學或工業應用都會用的上,例如基礎物理常數、光譜量測、原子分子及天文上的量測等。早期的頻率標準大多利用原子分子的吸收譜線來定義,無法涵蓋大範圍波段;不過透過飛秒雷射以及光子晶體光纖非線性效應的發展,已經可以涵蓋可見光到紅外光波段進行精密的測量。
本實驗使用鈦藍寶石雷射(Ti:Sapphire Laser)為鎖模雷射(Mode-Locked Laser)產生飛秒等級的脈衝,建立一個飛秒光頻梳雷射(Femtosecond Frequency Comb Laser):也就是讓頻率上縱模與縱模之間的頻率差是固定的。鎖模雷射的第n個縱模頻率可以表示為: 的形式,其中frep為脈衝重複率(Repetition Rate),fo為頻差(Offset Frequency),當我們將鎖模雷射打入光子晶體光纖(Photonic Crystal Fiber)將鈦藍寶石雷射的頻寬拉長一個八度音(octave),接著用自我參考(self-reference)的方法取出fo,當我們同時把frep以及fo都控制住時頻率上分布就上梳子一樣,可以當成一個頻率標準;然而於n的值很大有10^6的等級因此考慮nfrep時我們的頻率標準仍有一定的不準度,我們將藉由一個銫原子半導體穩頻雷射來與光梳雷射取拍頻當作誤差訊號回授控制雷射改善光頻梳雷射的不準度。 | zh_TW |
| dc.description.abstract | Frequency standard plays a crucial role in metrology. It is applied in fundamental science and industry (such as measurement of fundamental physics constants, spectrum, and astronomy). In the past, definition of frequency standard was based on the spectral line of atoms, but this method got involved in broad bandwidth region. Thanks to the development of femtosecond mode-locked laser and photonic crystal fiber, frequency standard nowadays covers from visible to infrared region.
In this article we use a Ti:Sapphire laser as a femtosecond mode-locked laser to build up a femtosecond frequency comb laser. Its feature is the same intervals between frequency modes, and that’s where the word, “comb”, comes from. The optical frequency of the nth mode of the mode-locked laser can be expressed as:fn=nfrep+fo, where frep is repetition rate and fo is offset frequency. We apply method of self- reference to build up the comb laser. However, there’s a certain uncertainty of fn, since n has a order of magnitude about 10^6 so as to the error-bond of n. For this concern, beat note between a frequency stabilized diode laser at 822nm and our comb laser is served as an error signal to feedback and reduce the uncertainty of the comb laser. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:45:47Z (GMT). No. of bitstreams: 1 ntu-99-R97222040-1.pdf: 2024856 bytes, checksum: 5502de66dbb80522aafe26971acc86da (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | CHAPTER 1 INTRODUCTION……8
1.1 Introduction to Frequency Comb Laser……8 1.2 Motivation……9 1.3 Overview……10 CHAPTER 2 EXPERIMENT PRINCIPLES……11 2.1 Introduction to Mode-Locked Laser……11 2.2 Kerr Effect……13 2.3 Self-Phase Modulation (SPM)……14 2.4 Fourier Transform Limit……15 2.5 Group Velocity Dispersion (GVD)……16 2.6 Dispersion Compensation……16 2.7 The Stability Zone……19 2.8 The Repetition Rate (frep) and Offset Frequency (fo) of the Mode-Locked Laser……20 2.9 Self-Reference……22 2.10 Building up a Comb Laser……23 2.11 Supercontinuum Generation [28] [29]……24 2.12 Nonlinear Effect [32]……27 CHAPTER 3 EXPERIMENT SETUP……30 3.1 The Ti:Sapphire Mode-Locked Cavity Design……30 3.2 Pulse Duration……37 3.3 Laser Stabilization……38 3.4 Absolute Frequency Measurement……46 3.5 Absolute Frequency Measurement for Cesium-Stabilized Diode Laser at 822 nm……47 3.6 Improvement of the Repetition Rate by Cesium-Stabilized Diode Laser at 822nm……48 CHAPTER 4 EXPERIMENT RESULTS……49 4.1 Data of the Ti:Sapphire Mode-Locked Laser……49 4.2 Data of the Frequency Stabilization……56 4.3 Data of Beating with the Frequency-Stabilized Diode Laser……58 4.4 Future Works……59 REFERENCE……60 | |
| dc.language.iso | en | |
| dc.subject | 鈦藍寶石雷射 | zh_TW |
| dc.subject | 飛秒光頻梳雷射 | zh_TW |
| dc.subject | 自我參考 | zh_TW |
| dc.subject | 光子晶體光纖 | zh_TW |
| dc.subject | 鎖模雷射 | zh_TW |
| dc.subject | photonic crystal fiber | en |
| dc.subject | femtosecond frequency comb laser | en |
| dc.subject | mode-locked laser | en |
| dc.subject | Ti:Sapphire laser | en |
| dc.subject | self-reference | en |
| dc.title | 利用822nm銫原子穩頻雷射改善光梳雷射重複率 | zh_TW |
| dc.title | Repetition-Rate Stability Improvement of a Frequency Comb Laser with a Cesium-Stabilized 822-nm Diode Laser | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 鄭王曜(Wang-Yau Cheng) | |
| dc.contributor.oralexamcommittee | 彭錦龍 | |
| dc.subject.keyword | 鈦藍寶石雷射,鎖模雷射,飛秒光頻梳雷射,光子晶體光纖,自我參考, | zh_TW |
| dc.subject.keyword | Ti:Sapphire laser,mode-locked laser,femtosecond frequency comb laser,photonic crystal fiber,self-reference, | en |
| dc.relation.page | 62 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-06 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 1.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
