請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45761完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾宇鳳(Y. Jane Tseng) | |
| dc.contributor.author | Cheng-Chieh Tsai | en |
| dc.contributor.author | 蔡政倢 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:45:43Z | - |
| dc.date.available | 2015-08-11 | |
| dc.date.copyright | 2010-08-11 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-06 | |
| dc.identifier.citation | 1. Kahn ML: Platelet-collagen responses: molecular basis and therapeutic promise.
Seminars in Thrombosis and Hemostasis 2004, 30:419-425. 2. Massberg S, Gawaz M, Gr u ner S, Schulte V, Konrad I, Zohlnhofer D, Heinzmann U, Nieswandt B: A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. The Journal of Experimental Medicine 2003, 197:41-49. 3. Horii K, Kahn ML, Herr AB: Structural basis for platelet collagen responses by the immune-type receptor glycoprotein VI. Blood 2006, 108:936-942. 4. Andrew B H: Direct evidence of a native GPVI dimer at the platelet surface. Journal of Thrombosis and Haemostasis 2009:1344-1346. 5. Jung SM, Tsuji K, Moroi M: Glycoprotein (GP) VI dimer as a major collagen-binding site of native platelets: direct evidence obtained with dimeric GPVI-specific fabs. Journal of Thrombosis and Haemostasis 2009, 7:1347-1355. 6. Ezumi Y, Kodama K, Uchiyama T, Takayama H: Constitutive and functional association of the platelet collagen receptor glycoprotein VI-Fc receptor gamma-chain complex with membrane rafts. Blood 2002, 99:3250-3255. 7. Wonerow P, Obergfell A, Wilde JI, Bobe R, Asazuma N, Brdicka T, Leo A, Schraven B, Horejsi V, Shattil SJ, Watson SP: Differential role of glycolipid-enriched membrane domains in glycoprotein VI- and integrin-mediated phospholipase Cgamma2 regulation in platelets. Biochemical Journal 2002, 364:755-765. 8. Jandrot-Perrus M, Lagrue A-H, Okuma M, Bon C: Adhesion and activation of human platelets induced by Convulxin involve Glycoprotein VI and integrin α2β1. Journal of Biological Chemistry 1997, 272:27035-27041. 9. Clemetson KJ, Lu Q, Clemetson JM: Snake C-type lectin-like proteins and platelet receptors. Pathophysiology of Haemostasis and Thrombosis 2005, 34:150-155. 10. Lu Q, Navdaev A, Clemetson JM, Clemetson KJ: Snake venom C-type lectins interacting with platelet receptors. Structure-function relationships and effects on haemostasis. Toxicon 2005, 45:1089-1098. 11. Horii K, Brooks MT, Herr AB: Convulxin forms a dimer in solution and can bind eight copies of Glycoprotein VI: implications for platelet activation. Biochemistry 2009, 48:2907-2914. 12. Murakami MT, Zela SP, Gava LM, Michelan-Duarte S, Cintra ACO, Arni RK: Crystal structure of the platelet activator Convulxin, a disulfide-linked α4β4 cyclic tetramer from the venom of Crotalus durissus terrificus. Biochemical and Biophysical Research Communications 2003, 310:478-482. 13. Rubinstein M, Niv MY: Peptidic modulators of protein-protein interactions: progress and challenges in computational design. Biopolymers 2009, 91:505-513. 14. McGregor DP: Discovering and improving novel peptide therapeutics. Current Opinion in Pharmacology 2008, 8:616-619. 15. Pawson T, Nash P: Protein-protein interactions define specificity in signal transduction. Genes & Development 2000, 14:1027-1047. 16. Bogan AA, Thorn KS: Anatomy of hot spots in protein interfaces. Journal of Molecular Biology 1998, 280:1-9. 17. Massova I, Kollman PA: Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies. Journal of the American Chemical Society 1999, 121:8133-8143. 18. Botger A, Botger V, Garcia-Echeverria C, Chene P, Hochkeppel H-K, Sampson W, Ang K, Howard SF, Picksley SM, Lane DP: Molecular characterization of the hdm2-p53 interaction. Journal of Molecular Biology 1997, 269:744-756. 19. Huo S, Massova I, Kollman PA: Computational alanine scanning of the 1:1 human growth hormone-receptor complex. Journal of Computational Chemistry 2002, 23:15-27. 20. Zoete V, Michielin O: Comparison between computational alanine scanning and per-residue binding free energy decomposition for protein-protein association using MM-GBSA: Application to the TCR-p-MHC complex. Proteins: Structure, Function, and Bioinformatics 2007, 67:1026-1047. 21. Floudas CA, Fung HK, McAllister SR, Monnigmann M, Rajgaria R: Advances in protein structure prediction and de novo protein design: a review. Chemical Engineering Science 2006, 61:966-988. 22. Hardin C, Pogorelov TV, Luthey-Schulten Z: Ab initio protein structure prediction. Current Opinion in Structural Biology 2002, 12:176-181. 23. Fung HK, Welsh WJ, Floudas CA: Computational de novo peptide and protein design: rigid templates versus flexible templates. Industrial & Engineering Chemistry Research 2008, 47:993-1001. 24. Shifman JM, Mayo SL: Modulating calmodulin binding specificity through computational protein design. Journal of Molecular Biology 2002, 323:417-423. 25. Rabinowitz JD, Beeson C, Wu lfing C, Tate K, Allen PM, Davis MM, McConnell HM: Altered T cell receptor ligands trigger a subset of early T cell signals. Immunity 1996, 5:125-135. 26. Reis e Sousa C, Levine EH, Germain RN: Partial signaling by CD8+ T cells in response to antagonist ligands. The Journal of Experimental Medicine 1996, 184:149-157. 27. Ogata K, Jaramillo A, Cohen W, Briand J-P, Connan F, Choppin J, Muller S, Wodak SJ: Automatic sequence design of major histocompatibility complex class I binding peptides Impairing CD8+ T Cell recognition. Journal of Biological Chemistry 2003, 278:1281-1290. 28. Dennis AT, Fam PS, Tidor B, Jasanoff A: Rational design of new binding specificity by simultaneous mutagenesis of calmodulin and a target peptide Biochemistry 2006, 45:12547-12559. 29. Fung HK, Floudas CA, Taylor MS, Zhang L, Morikis D: Toward full-sequence de novo protein design with flexible templates for human β-defensin-2. Biophysical Journal 2008, 94:584-599. 30. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society 1995, 117:5179-5197. 31. Abe K, Kobayashi N, Sode K, Ikebukuro K: Peptide ligand screening of α-synuclein aggregation modulators by in silico panning. BMC Bioinformatics 2007, 8:451. 32. Belda I, Madurga S, Llora X, Martinell M, Tarrago T, Piqueras M, Nicolas E, Giralt E: ENPDA: an evolutionary structure-based de novo peptide design algorithm. Journal of Computer-Aided Molecular Design 2005, 19:585 - 601. 33. Yagi Y, Terada K, Noma T, Ikebukuro K, Sode K: In silico panning for a non-competitive peptide inhibitor. BMC Bioinformatics 2007, 8:11. 34. Yokobayashi Y, Ikebukuro K, McNiven S, Karube I: Directed evolution of trypsin inhibiting peptides using a genetic algorithm. J Chem Soc ,Perkin Trans 1996, 1:2435 - 2437. 35. Ching-Hu Chung C-HC, and Tur-Fu Huang: Exploration of the snake venom C-type lectin sequence involved in platelet aggregation mediated by ligation of GPVI and α2β11 receptor. in prep. 36. Chien-Hsin Chang C-HC, and Tur-Fu Huang: Study of synthetic peptides of snake venom C-type lectins on platelet aggregation. in prep. 37. Kortemme T, Kim DE, Baker D: Computational alanine scanning of protein-protein interfaces. Sci STKE 2004, 2004:pl2-. 38. Yoshimori A, Takasawa R, Tanuma S-i: A novel method for evaluation and screening of caspase inhibitory peptides by the amino acid positional fitness score. BMC Pharmacology 2004, 4:7. 39. Nakajima H, Mizuta N, Sakaguchi K, Fujiwara I, Yoshimori A, Takahashi S, Takasawa R, Tanuma S-i: Development of HER2-antagonistic peptides as novel anti-breast cancer drugs by in silico methods. Breast Cancer 2008, 15:65-72. 40. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Research 2000, 28:235-242. 41. Murakami MT, Zela SP, Gava LM, Michelan-Duarte S, Cintra ACO, Arni RK: Crystal structure of the platelet activator Convulxin, a disulfide-linked α4β4 cyclic tetramer from the venom of Crotalus durissus terrificus. Biochemical and Biophysical Research Communications 2003, 310:478-482. 42. The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrodinger, LLC. 43. Sanner. MF: Python: a programming language for software integration and development. Journal of Molecular Graphics and Modelling, 17:57-61. 44. Arnold K, Bordoli L, Kopp J, Schwede T: The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 2006, 22:195-201. 45. Schwede T, Kopp J, Guex N, Peitsch MC: SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Research 2003, 31:3381-3385. 46. Morris G.M., Goodsell D.S., Halliday R.S., Hart W.E., Belew R.K., Olson A.J.: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 1998, 19:1639-1662. 47. Huey R, Morris G.M., Olson A.J., Goodsell D.S.: A semiempirical free energy force field with charge-based desolvation. Journal of Computational Chemistry 2007, 28:1145-1152. 48. Hess B, Kutzner C, van der Spoel D, Lindahl E: GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. Journal of Chemical Theory and Computation 2008, 4:435-447. 49. Ryckaert J-P, Ciccotti G, Berendsen HJC: Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics 1977, 23:327-341. 50. Humphrey W DA, Schulten K.: VMD: visual molecular dynamics. Journal of Molecular Graphics 1996, 14:33-38. 51. Chen R, Li L, Weng Z: ZDOCK: an initial-stage protein-docking algorithm. Proteins: Structure, Function, and Genetics 2003, 52:80-87. 52. Feig M, Karanicolas J, Brooks Iii CL: MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology. Journal of Molecular Graphics and Modelling 2004, 22:377-395. 53. Ponder JW: TINKER: software tools for molecular design, Ver.3.8. Washington University School of Medicine. 54. Trott O, Olson AJ: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31:455-461. 55. Chen H, Locke D, Liu Y, Liu C, Kahn ML: The platelet receptor GPVI mediates both adhesion and signaling responses to collagen in a receptor density-dependent fashion. Journal of Biological Chemistry 2002, 277:3011-3019. 56. Li C, Pazgier M, Li C, Yuan W, Liu M, Wei G, Lu W-Y, Lu W: Systematic mutational analysis of peptide inhibition of the p53-MDM2/MDMX Interactions. Journal of Molecular Biology, 398:200-213. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45761 | - |
| dc.description.abstract | 心肌梗塞和中風是已開發國家當中最常見的兩種死因,這兩種疾病的起因皆與血管受傷時血小板上醣蛋白(GPVI)的反應有關,凝血機制透過GPVI 與其受體膠原蛋白、蛇毒等產生凝血反應,以聚集許多GPVI 來啟動凝血機制。因此我們可以透過阻止GPVI 的凝聚反應,來開發治療人類心血管疾病的抗血栓劑。
本篇論文中,利用分子接合與分子動態模擬來探勘許多蛇毒片段對於GPVI 接合的性質,我們推論出具活性蛋白質片段的長度以及接合位置的條件。蛋白質片段應介於6 到8 個胺基酸之間,如果蛋白質片段的長度過長會導致接合位置位於GPVI的外側,降低蛋白質片段的活性。為了提高蛋白質片段的活性,我們利用了丙胺酸掃描的數值模型來分析先前生物實驗結果當中活性最高的蛋白質片段,並且藉由丙胺酸掃描的結果和分子動態模擬來尋找出具有更高活性的胺基酸組合,希望能藉此提高蛋白質片段對GPVI 的抑制活性。 在全新蛋白質設計問題上,我們提出一個新的長片段胜肽設計演算法應用於蛋白質藥物設計。此類問題,傳統上利用基因演算法針對受體的表面來設計新的胜肽,基因演算法並不適用於長片段的胜肽設計,因為其演算的速度過慢,並且無法篩選全部的組合,容易收斂於局部的受體表面。我們提出的新方法結合了胺基酸位置適合度矩陣來加快篩選並用基因演算法進行最佳化,我們根據前人研究的E3 泛素連接酶(E3 ubiqutin ligase)來進行驗證,重現研究中提出的胜肽,以及胜肽上各個點突變之間的關係。此驗證證明了方法的可用性,將可應用於設計新的抗血栓胜肽。 | zh_TW |
| dc.description.abstract | Myocardial infarction and stroke, the two most common causes of death in the
developed world, were related to the platelet response mediated through human glycoprotein VI to vessel injuries. Natural ligands of Human GPVI, for example, collagen and several snake venoms, activated the signal transduction by first linking several GPVI. Therefore, designing inhibitors which prevent GPVI aggregation can be used as anti-thrombotic agents to treat human cardiovascular disease. In this study, molecular docking and molecular dynamics simulation were performed to explore the binding characteristics of several snake venom fragments to GPVI. We found an optimal the peptide length of six to eight amino acids and the relative position for good affinity. If the peptide length is larger than six, the fragment binding position would shift to the outer region of GPVI and result in a lower inhibition activity. To further explore the activity of protein fragment, the computational alanine scanning was performed to the most potent hexapeptide obtained from previous biological experiments. According to these results, we searched new sequence combinations that may have higher inhibited activities to GPVI. In protein de novo design part, a new methodology was proposed and can be applied on long peptide drug design. Traditionally, novel peptides without template VII peptide can be generated by genetic algorithm according to the interaction surface of the target. However, the genetic algorithm was not applicable for long length peptide design due to the slow calculation resulted in incomplete exploration of peptide assembly. In addition, genetic algorithm is easy to converge in local minimum at the interaction surface. Therefore, we proposed a new method combined with amino acid positional fitness to pre-filter all the possible combinations before applying genetic algorithm for optimization. The method was validated by successful repeating results from a set of an E3 ubiquitin ligase complex with a series of potent peptide obtained from previous studies. The method not only re-generated the peptide and their activity trend but also confirmed the point mutation relationship in the peptide. The validation proves the appliance of this new method in peptide drug design and can be implemented to the design strategy of novel anti-thrombotic peptides. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:45:43Z (GMT). No. of bitstreams: 1 ntu-99-R97945040-1.pdf: 3324959 bytes, checksum: 52c519598771c634067a8c83dbb932b9 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書…………..…………………………………………………………..i
誌謝…..………………………………………………………………………………….ii 中文摘要…………..……………………………………………………………………iv Abstract..…………………………………………………………………….…………..vi List of Figures………………………………………………………………………..…… List of Tables……………………………………………………………………………... Chapter I Introduction……………..………...…………………….…………………….1 1.1 Glycoprotein VI Introduction……….....……………….……………..…………1 1.2 Interaction between Collagen and Glycoprotein VI…..………………………....2 1.3 Convulxin binding model…………………..……………....……..……………..3 1.4 In silico techniques in peptide drug design………………………………………4 1.5 Computational alanine scanning……………….......................….………………5 1.6 De novo protein design…………………..…......................……………………..6 1.7 The design of Snake venom fragments…………….....................……..……….11 1.8 New methodology for long-length peptide design………………..…..……..…12 Chapter II Material and Methods……………………………………….………………14 2.1 System preparation……………..……..……………..…………………………14 2.2 Molecular Docking……………..…..………………..…………………………15 2.3 Molecular Dynamics simulation………………………...……………………...15 2.4 Trajectory Analysis………………………………………...…………………...17 2.5 Computational Alanine Scanning………………………………...…………….17 2.6 Genetic algorithm based de novo protein design………………...……………..18 2.7 Genetic algorithm with amino acid positional fitness (APF) score…………….19 2.8 Construction of APF score matrix……………………..………..……………...21 Chapter III Results and Discussion…………………………………………………….23 3.1 The Trowaglerix design…...……………………………...…………………….23 3.1.1 Docking result of Convulxinα and Trowaglerix fragments with GPVI………23 3.1.2 Structure and Stability of the MD systems……………………..….………….25 3.1.3 Molecular dynamics simulations in Trowaglerix Fragments……………..…..28 3.1.4 The docking result of long-length peptides………………..………………….30 3.1.5 Computational alanine scanning and further modification of hexapeptide...…34 3.2 De novo design…………………………...…………………………………….38 3.2.1 Docking energy transition in evolution progress………………...……………38 3.3 The new methodology combined amino acid positional fitness and genetic… algorithm………………………………………………………………………..43 3.3.1 The concept and validation set of new method………………...……………..44 3.3.2 Construction of APF score matrix………………………………...…………..47 3.3.3 The optimization by genetic algorithm………………………………...……...50 3.3.4 Comparison between new method and original genetic algorithm…….……..51 Chapter IV Conclusion…………………………………………………………………54 4.1 The Trowaglerix design…...……………………………………………………54 4.2 De novo design…………………………………………………………………55 Reference……………………………………………………………………………….57 | |
| dc.language.iso | en | |
| dc.subject | 蛋白質設計 | zh_TW |
| dc.subject | 蛇毒 | zh_TW |
| dc.subject | c-type lectins | en |
| dc.subject | de novo protein design | en |
| dc.subject | glycoprotein VI | en |
| dc.title | 蛇毒 C 型凝集素衍生之拮抗劑與血小板醣蛋白陸交互作用的
結構探討 | zh_TW |
| dc.title | Structural basis of platelet glycoprotein VI antagonists derived from snake venom C-type lectins | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃德富(Tur-Fu Huang),鍾鏡湖(Ching-Hu Chung) | |
| dc.subject.keyword | 蛇毒,蛋白質設計, | zh_TW |
| dc.subject.keyword | glycoprotein VI,de novo protein design,c-type lectins, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-06 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
