Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4575
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor崔茂培(Mao-Pei Tsui)
dc.contributor.authorPang-Yen Chenen
dc.contributor.author陳邦彥zh_TW
dc.date.accessioned2021-05-14T17:43:36Z-
dc.date.available2016-02-02
dc.date.available2021-05-14T17:43:36Z-
dc.date.copyright2016-02-02
dc.date.issued2015
dc.date.submitted2015-12-03
dc.identifier.citation[1] Ben Andrews, Fully nonlinear parabolic equations in two space variables, preprint, available at
http://arxiv.org/pdf/math/0402235.
[2] Qi Ding, The inverse mean curvature
ow in rotationally symmetric spaces, Chin. Ann. Math.
Ser. B 32 (2011), no. 1, 27{44. MR2772224 (2012d:53214).
[3] Claus Gerhardt, Flow of nonconvex hypersurfaces into spheres, J. Di erential Geom. 32 (1990),
no. 1, 299{314. MR1064876 (91k:53016).
[4] Robert Geroch, Energy extraction, Annals of the New York Academy of Sciences 224 (1973),
108{117.
[5] Pengfei Guan and Junfang Li, The quermassintegral inequalities for k-convex starshaped domains,
Adv. Math. 221 (2009), no. 5, 1725{1732. MR2522433 (2010i:52021).
[6] Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Di erential Geom. 17
(1982), no. 2, 255{306. MR664497 (84a:53050).
[7] Gerhard Huisken and Tom Ilmanen, The inverse mean curvature
ow and the Riemannian Penrose
inequality, J. Di erential Geom. 59 (2001), no. 3, 353{437. MR1916951 (2003h:53091).
[8] Gerhard Huisken and Tom Ilmanen, Higher regularity of the inverse mean curvature
ow, J.
Di erential Geom. 80 (2008), no. 3, 433{451. MR2472479 (2010c:53097).
[9] Pong Soo Jang and Robert M. Wald, The positive energy conjecture and the cosmic censor
hypothesis, J. Mathematical Phys. 18 (1977), no. 1, 41{44. MR0523907 (58 no.25755).
[10] N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations, Izv. Akad. Nauk SSSR
Ser. Mat. 46 (1982), no. 3, 487{523, 670. MR661144 (84a:35091).
[11] Haizhong Li and Yong Wei, On inverse mean curvature
ow in Schwarzschild space and Kottler
space, preprint, available at http://arxiv.org/pdf/1212.4218.pdf..
[12] John I. E. Urbas, On the expansion of starshaped hypersurfaces by symmetric functions of their
principal curvatures, Math. Z. 205 (1990), no. 3, 355{372. MR1082861 (92c:53037).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4575-
dc.description.abstract這篇文章中,我們討論超曲面在對曲率做合理假設下的旋轉對稱空間中沿著逆平均曲率流之行為。我們針對逆平均曲率流的初始曲面為封閉、星形且mean-convex之情形的長時間存在性以及近似行為做細部分析。另外我們利用逆平均曲率流來證明歐氏空間中定義域為星形且mean-convex之quermassintegrals的isoperimetric不等式。zh_TW
dc.description.abstractIn this thesis, we study the behavior of the motion of hypersurfaces by their inverse mean curvature flow (abbreviated as IMCF) in the rotational symmetric space with reasonable condition on its curvatures. In particular, we give a detailed analysis about the long time existence and the asymptotic behavior of the IMCF when the initial surface is closed star-shaped and mean-convex. We also present an application of the IMCF to the proof of the isoperimetric inequality for quermassintegrals of mean-convex star-shaped domains in Euclidean space.en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:43:36Z (GMT). No. of bitstreams: 1
ntu-104-R01221014-1.pdf: 742544 bytes, checksum: 9a86b65c5a95adf35fe651df11d26ec6 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝i
中文摘要ii
Abstract iii
1. Introduction 1
2. Preliminary 5
3. The Geometry of Star-Shaped Hypersurfaces in a Rotationally Symmetric
Space 10
4. The Inverse Mean Curvature Flow 19
5. Proof of Theorem 1.3 35
6. Proof of Theorem 1.4 39
References 41
dc.language.isoen
dc.subject逆平均曲率流zh_TW
dc.subjectInverse Mean Curvature Flowen
dc.title逆平均曲率流之研究zh_TW
dc.titleA Study of the Inverse Mean Curvature Flowen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡忠潤(Chung-Jun Tsai),張樹城(Shun-Cheng Chang)
dc.subject.keyword逆平均曲率流,zh_TW
dc.subject.keywordInverse Mean Curvature Flow,en
dc.relation.page41
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-12-03
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf725.14 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved