Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45733
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor藍崇文(Chung-Wen Lan)
dc.contributor.authorChang-Chih Chenen
dc.contributor.author陳昶志zh_TW
dc.date.accessioned2021-06-15T04:45:16Z-
dc.date.available2015-08-10
dc.date.copyright2010-08-10
dc.date.issued2010
dc.date.submitted2010-08-06
dc.identifier.citation[1] S.A David and T. DebRoy, ’Current issues and problems in welding science’, Science 257, 497-502 (1992)
[2] J.-W. Park, S.S. Babu, J.M. Vitek, A. Kenik, and S.A. David, ‘Gtray grain frmation in single crystal Ni-base superalloy welds’, Journal of Applied Physics 94, 6, 4203-4209 (2003).
[3] Y. Furukawa and T. Kobayashi, ‘Snow Crystals’ in Japanese, Snow Crystals Museum in Asahikawa, Hokkaido, Japan (1991)
[4] W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma, ’Phase-field simulation of solidification’, Annual Review of Matererials Research 2002, 32, 163-194 (2002)
[5] M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, and R. Trivedi, ‘Solidification in microstructures and solid-sate parallels: Recent development, future directions’, Acta Materialia 57, 941-971 (2009)
[6] 許晉銘,’在強制對流下樹枝狀晶體成長之適應性相場模擬’,碩士論文,台灣大學化學工程研究所,2002
[7] R.F. Sekerka, ‘Presentation to the committee on microgravity research’, Material Science DWG (2001)
[8] M.E. Glicksman, ‘Free dendritic growth’, Materials Science and Engineering 65, 45-55 (1984)
[9] G.P. Ivantsov, ‘Temperature field around spherical cylindrical and needleshaped crystals which grow in supercooled melt’, Dokl. Akad. Nauk SSSR 58, 567–569 (1947)
[10] G. Horvay and J.W. Cahn, ‘Dendritic and spheroidal growth’, Acta Metallurgica 9, 695-705 (1961)
[11] Ph. Bouissou, ‘Influence of an external flow on dendritic crystal growth’, ‘Effect of a forced flow on dendritic growth’, Physical Review A 40, 1, 509-510 and 11, 6673-6680 (1989)
[12] M.E. Glicksman, M.B. Koss, L.T. Bushnell, J.C. LaCombe and E.A. Winsa, ‘Dendritic growth of succinonitrile in terrestrial and microgravity conditions as a test of theory’, The Iron and Steel Institute of Japan international 35, 604-610 (1995)
[13] D.E. Temkin, ’ On the growth kinetics of needleshaped crystals in undercooled melts’, Doklady Akademii Nauk SSSR 132, 1307-1310 (1960)
[14] M.E. Glicksman and R.J. Schaefer, ‘Investigation of solid/liquid interfaace temperatures via isenthalpic solidification’, Journal of Crystal Growth 1, 297-310 (1967)
[15] M.E. Glicksman and R.J. Schaefer, ‘Comments on theoretical analyses of isenthalpic solidification’, Journal of Crystal Growth 2, 239-242 (1968)
[16] J.S. Langer and H. Müller-Krumbhaar, ’Theory of dendritic growth-I. Elements of a stability analysis’, Acta Metallurgica 26, 1681-1687 (1978)
[17] D.A. Kessler, J. Koplik, and H. Levine, ‘Pattern selection in fingered growth phenomena’, Advances in Physics 37, 255-339 (1988)
[18] S.-C. Huang and M.E. Glicksman, ‘Fundamentals of dendritic solidification’, Acta Metallurgica 29, 701-715 & 717-734 (1981)
[19] C.C. Chen, and C.W. Lan, ‘Efficient adaptive three-dimensional phase-field simulation of dendritic crystal growth form various supercoolings using rescaling’, Journal of Crystal Growth 311, 702-706 (2009)
[20] H. Fredriksson, N. El Mahallawy, M. Taha, Liu Xiang,s and G. Wanglow, ‘The effect of stirring on the solidification process in metals’, Scandinavian Journal of Metallurgy 5, 127-137 (1986)
[21] R. Ananth and W.N. Gill, ‘Dendritic growth with thermal convection’, Journal of Crystal Growth 91, 587-598 (1988)
[22] R. Ananth and W.N. Gill, ‘Dendritic growth in microgravity and forced convection’, Journal of Crystal Growth 179, 263-276 (1997)
[23] Y.-W. Lee, R. Ananth and W.N. Gill, ‘Forced convection heat transfer during dendritic crystal growth: Local solutions of Navier-Stokes equations’, Chemical Engineering Communications 116, 193-200 (1992)
[24] Y.-W. Lee, R. Ananth, and W.N. Gill, ‘Selection of a length scale in unconstrained dendritic growth with convection in the melt’, Journal of Crystal Growth 132, 226-230 (1993)
[25] M.E. Glicksman, S.R. Coriell, and G.B. McFadden, ‘Inter-action of flows with the crystal-melt interface’, Annual Review of Fluid Mechanics 18, 307-335 (1986)
[26] M.E. Glicksman, M.B. Koss, and E.A. Winsa, ‘Dendritic growth velocities in microgravity’, Physical Review Letters 73, 573-576 (1994)
[27] M.E. Glicksman, M.B. Koss, L.T. Bushnell, J.C. LaCombe and E.A. Winsa, ‘Space flight data from the isothermal dendritic growth experiment’, Advances in Space Research 16, 181-184 (1995).
[28] R. Ananth and W.N. Gill, ‘The effect of convection on axisymmetric parabolic dendrites’, Chemical Engineering Communications 68, 1-14 (1988)
[29] R. Ananth and W.N. Gill, ‘Dendritic growth of an elliptical paraboloid with forced convection in the melt’, Journal of Fluid Mechanics 208, 575-593 (1989)
[30] R. Ananth and W.N. Gill, ‘Self-consistent theory of dendritic growth with convection’, Journal of Crystal Growth 108, 173-189 (1991)
[31] M. Do-Quang and G. Amberg, ‘Simulation of free dendritic crystal growth in a gravity environment’, Journal of Computational Physics 227, 1772-1789 (2008)
[32] R. Tonhardt, G. Amberg, ‘Simulation of natural convection effects on succinonitrile crystals’, Physical Review E 62, 828-836 (2000)
[33] P. Zhao, J.C. Heinrich and D.R. Poirier, ‘Dendritic solidification of binary alloys with free and forced convection’, International Journal for Numerical Methods in Fluid 49, 233-266 (2005)
[34] S.H. Davis, Theory of Solidification, Cambridge University Press (2001)
[35] J. A. Sethian and J. Strain, ‘Crystal growth and dendritics solidification’, Journal of Computational Physics 98, 231-253 (1992)
[36] R. Almgren, ‘Variational algorithms and pattern formation in dendritic solidification’, Journal of Computational Physics 106, 337-354 (1993)
[37] A.R. Roosen and J.E. Taylor, ‘Modeling crystal growth in a diffusion field using fully-faceted interfaces’, Journal of Computational Physics 114, 113-128 (1994)
[38] K. Tsiveriotis and R.A. Brown, ‘Solution of free-boundary problems using finite-element/newton methods and locally refined grids: application to analysis of solidification microstructure’, International Journal for Numerical Methods in Fluids 16, 827-843 (1993)
[39] A. Schmidt, ‘Computation of three dimensional dendrites with finite elements’, Journal of Computational Physics 125, 293-312 (1996)
[40] D. Juric and G. Tryggvason, ‘A front-tracking method for dendritic solidification’, Journal of Computational Physics 123, 127-148 (1996)
[41] H.S. Udaykumar and L. Mao, ‘Sharp-interface simulation of dendritic solidification of solutions’, International Journal of Heat and Mass Transfer 45, 4793-4808 (2002)
[42] S. Osher and J.A. Sethian, ‘Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formations’, Journal of Computational Physics 79, 12-49 (1988)
[43] T.D. Aslam, ‘A partial differential equation approach to multidimensional extrapolation’, Journal of Computational Physics 193, 349-355 (2003)
[44] 莊明軒,’適應性等位函數法在固化問題之模擬’,碩士論文,台灣大學化學工程研究所,2006
[45] R. Kobayashi, ‘Modeling and numerical simulations of dendritic crystal growth’, Physical D 63, 410-423 (1993)
[46] S.–L. Wang and R. F. Sekerka, ‘Computation of the dendrite operating state at large supercoolings by the phase field model’, Physical Review E 53, 3760-3776 (1996)
[47] A.A. Wheeler, B.T. Murray and R.J. Schaefer, ‘Computation of dendrites using a phase field model’, Physica D 66 243-262 (1993)
[48] J.J. Hoyt, M. Asta and A. Karma, ‘Atomistic and continuum modeling of dendritic solidification’, Material Science and Engineering R 41, 121-163 (2003).
[49] G. Caginalp, ‘An analysis of a phase field model of a free boundary, Archive for Rational Mechanics and Anaysis 92, 205-245 (1986)
[50] G. Caginalp, ‘Surface tension and supercooling in solidification theory, lecture notes in behavior of a phase boundary’, Annals of Physics 172, 136-155 (1986)
[51] G. Caginalp and E. Socolovsky, ‘Phase field computations of single-needle crystals, crystal growth , and motion by mean curfvature’, SIAM Journal on Scientific Computing 15, 106-126 (1994)
[52] A. Karma and W.-J. Rappel, ‘Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics’, Physical Review E 53, 4, R3017-3020 (1996).
[53] A. Karma and W.-J. Rappel, ‘Numerical simulation of three-dimensional dendritic growth’, Physical Review Letters 77, 19, 4050-4053 (1996).
[54] A. Karma and W.-J. Rappel, ‘Quantitative phase-field modeling of denrdritic growth in two and three dimensions’, Physical Review E 57, 4, 4323-4349 (1998).
[55] G. Amberg, ‘Semisharp phase field method for quantitative phase change simulations’, Physical Review Letters 92, 265505-1-4 (2003)
[56] A. Karma, Y. H. Lee, and M. Plapp, ‘Three-dimensional dendrite-tip morphology at low undercooling’, Physical Review E 61, 4, 3996-4006 (2000)
[57] R. J. Braun and B. T. Murray, ‘Adaptive phase-field computations of dendritic crystal growth’, Journal of Crystal Growth 174, 41-53 (1997)
[58] Y.-T Kim, N. Provatas, N. Goldenfeld and J. Dantzig, ‘Universal dynamics of phase-field models for dendritic growth’, Physical Review E 59, 2546-2549 (1999).
[59] C.W. Lan, C.C. Liu and C.M. Hsu, ‘An adaptive finite volume method for incompressible heat flow problems in solidification’, Jounal of Computational Physics 178, 464-497 (2002)
[60] N. Palle and J.A. Dantzig, ‘An adaptive mesh refinement scheme’, Metallurgical and Materials Transsaction A 27A, 707-717 (1996)
[61] N. Provatas, N. Goldenfeld, and J. Dantzig, ‘Efficient computation of dendritic microstructures using adaptive mesh refinemnet’, Physical Review Letters 80, 3308-3311 (1998)
[62] N. Provatas, N. Goldenfeld, and J. Dantzig, ‘Adaptive mesh refinement computation of solidification microstructures using dynamic data structures’, Journal of Computational Physics 148, 265-290 (1999)
[63] N. Provatas, N. Goldenfeld and J. Dantzig; J.C. Lacombe, A. Lupulescu, M.B. Koss and M.E. Glicksman; R. Almgren, ‘Crossover scaling in dendritic evolution at low under cooling’, Physical Review Letters 82, 4496-4499 (1999).
[64] C. Beckermann, H.-J. Diepers, I. Steinbach, A. Karma, and X. Tong, ‘Modeling melt convection in phase-field simulations of solidification’, Journal of Computational Physics 154, 468-496 (1999)
[65] H.J. Diepers, C. Beckermann, and I. Steinbach, ‘A phase-field method for alloy solidification with convection’, in Solidification Processing 1997: Proceedings of the Fourth Decennial International Conference on Solidification Processings, edited by J. Beech and H. Jones, 426-430 (University of Sheffield Press, Sheffield, 1997)
[66] X. Tong, C. Beckermann, and A. Karma, in Modeling of Casting, Welding and Advanced Solidification Processes VIII, edited by B.G. Thomas and C. Beckermann (The Minerals, Metals & Materials Society, Warrendale, PA, 1998)
[67] R. Tonhardt, G. Amberg, ‘Phase-field simulation of dendritic growth in a shear flow’, Journal of Crystal Growth 194, 406-425 (1998)
[68] R. Tonhardt and G. Amberg, ‘Dendritic growth of randomly oriented nuclei in a shear flow’, Journal of Crystal Growth 213, 161-187 (2000)
[69] J.-H. Jeong, N. Goldenfeld, and J.A. Dantzig, ‘Phase field model ofr three-dimensional dendritic growth with fluid flow’ Physical Review E 64, 041602 (2001)
[70] X. Tong, C. Beckermann, and A. Karma, ‘Velocity and shape selection of dendritic crystals in a forced flow’, Physical Review E 61, R49-52 (2000)
[71] X. Tong, C. Beckermann, A. Karma, and Q. Li, ‘Phase-field simulations of dendritic crystal growth in a forced flow’, Physical Review E 63, 061601 (2001)
[72] Y.Lu, C.Beckermann, and J. C. Ramirez, ‘Three-dimensional phase-field simulations of the effect of convection on free dendritic growth’, Journal of Crystal Growth 280, 320-334 (2005)
[73] C.W. Lan, C.M. Hsu, C.C Liu, and Y.C. Chang, ‘Adaptive phase field simulation of dendritic growth in a forced flow at various supercoolings’, Physical Review E 65, 061601 (2002)
[74] C.W. Lan, C.M. Hsu, and C.C Liu, ‘Efficient adaptive phase field simulation of dendritic growth in a froced flow at low supercooling’, Journal of Crystal Growth 241, 379-386 (2002)
[75] 施智仁,’定量相場模擬在合金單向固化問題上之研究’,碩士論文,台灣大學化學工程研究所,2004
[76] J.C. Ramirez, C. Beckermann, A. Karma, and H-J Diepers, ‘Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion’, Physical Review E 69, 051607 (2004)
[77] T. Ihle, ‘Competition between kinetic and surface tension anisotropy in dendritic growth’, The European Physical Journal B 16, 337-344 (2000)
[78] T. Haxhimali, A. Karma, F. Gonzales and M. Rappaz, ‘Orientation selection in dendritic evolution’, Nature Materials 5, 660-664 (2006)
[79] R.F. Sekerka, ‘Analytical criteria for missing orientations on three-dimensional equlibrium shapes’, Journal of Crystal Growth 275, 77-82 (2005)
[80] B.J. Spencer, ‘Asymptotic solutions for the equilibrium crystal shape with small corner energy regularization’, Physical Review E 69, 011603-1~10(2004)
[81] S. Torabi, J. Lowengrub, A. Voigt and S. Wise, ‘A new phase-field model for strongly anisotropic systems’, Proceedings of the Royal Society A 465, 1337-1359 (2009)
[82] C.W. Lan, C.J. Shih, and W.T. Hsu, ‘Long-time scale morphological dynamics near the onset of instability during directional solidification of an alloy’, Journal of Crystal Growth 264, 379-384 (2004)
[83] C.W. Lan and C.J. Shih, ‘Phase field simulation of non-isothermal free dendritic growth of a binary alloy in a forced flow’, Journal of Crystal Growth 264, 472-482 (2004)
[84] C.W. Lan and C.J. Shih, ‘Efficient phase field simulation of a binary dendritic growth in a forced flow’, Physical Review E 69, 031601 (2004)
[85] C.W. Lan, C.J. Shih, and M.H. Lee, ‘Quantitative phase field simulation of deep cells in directional solidification of an alloy’, Acta Materialis 53, 2285-2294 (2005)
[86] C.W. Lan, M.H. Lee, M.H. Chuang, and C.J. Shih, ‘Phase field modeling of convective and morphological instability during directional solidification of an alloy’, Journal of Crystal Growth 295, 202-208 (2006)
[87] 劉其俊,’適應性有限體積法的開發及其在固化上的應用’,碩士論文,台灣大學化學工程研究所,2001
[88] 蔡亞陸,’定量相場模式在三維合金垂直固化之研究’,碩士論文,台灣大學化學工程研究所,2008
[89] S.R. Mathur and J. Y. Murthy, ‘A pressure-based method for unstructured meshes’, Numerical Heat Transfer, Part B 31 (2), 195-215 (1997)
[90] C.C. Chen, Y.L. Tsai, and C.W. Lan, ‘Adaptive phase field simulation of dendritic crystal growth in a forced flow 2D vs 3D morphologies’, International Journal of Heat and Mass Transfer 52, 1158-1166 (2009)
[91] J.-H. Jeong, J.A. Dantzig, and N. Goldenfeld, ‘Dendritic growth with fluid flow in pure materials’, Metallurgical and Material Transactions A 34A, 459-466 (2003)
[92] J.A. Dantzig, ‘Multiscale methods,moving boundaries and inverse problems’, IPAM Workshop on Tissue Engineering (2003)
[93] Ph. Bouissou, A. A Chiefaudel, B. Perrin and P. Tabeling, ‘Dendritic side-branching forced by an external flow’, Europhysics Letters 13, 88-94 (1990)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45733-
dc.description.abstract在固化的過程中,操作條件決定了不同的材料性質,如果能了解固化過程中的機制與原理,便能幫助我們選擇適當的材料與操作條件,進一步的掌控材料的性質及應用。在本研究中,利用了相場模式法(PFM)概念與有限體積法(FVM)數值方法上的應用,模擬了一初始晶種在過冷液體之固化過程,加上使用本實驗室對二維適應性網格技術應用的成熟性,這類問題可以在一般的個人電腦上進行模擬,吾人更進一步將原先二維的架構延伸至三維,探討在三維空間下的影響,並利用適當的無因次尺度選擇,得到與過冷度無關的無因次長速與半徑,使得在succinonitrile樹枝狀晶體的模擬上,可以任意的針對不同過冷度進行模擬,在和實驗的比較上,從原先2K的過冷延伸至0.2K的過冷,成功的解決之前無法模擬實驗低過冷的問題。
本文對樹枝狀晶體的固化分做三個部分做探討,第一個部分是在無對流情況下的純擴散問題,也就是所謂的樹枝狀晶體,在這部分中主要討論不同過冷度與初始條件的影響,利用適當的尺度選擇,成功地模擬了樹枝狀晶體在實驗的時候,不同過冷度下所觀察到之相似性,亦提出低過冷時的抑制效應透過較大的無因次熱邊界層使得晶體的整體形態出現了差異性,較低的過冷度時,晶體非[100]的生長容易受到[100]生長的抑制,這和高過冷的情況恰好相反。
第二個部分則延續前面的基礎,探討樹枝狀晶體受強制對流之影響,在這部分首先比較強制對流在二維和三維上的差異,並比較不同對流強度、初始條件對樹枝狀晶體固化之影響,在三維的空間中,分支的生長較為容易,隨著過冷度的降低,分支生長的位置亦從側風處的主支移到迎風面的主支上。
第三個部分則是討論樹枝狀晶體受自然對流之影響,在我們的模擬結果中,利用三維適應性的架構,成功的模擬出樹枝狀晶體Peclet數與Grasholf數的1/4次方正比關係,除了和理論比較的一致外,晶體形態在分支的各位置也和實驗的觀察一致,這是之前二維文獻所無法做到的部分,我們更進一步的探討樹枝狀晶體在強制對流與自然對流這二種不同的流動方式下晶體型態與流場的差異,比較重力方向和重力強度的影響。
zh_TW
dc.description.abstractIn the solidification process, the properties of material can be controlled by the operating condition. It is important of understanding the mechanism and principle of solidification for us to choose the satisfied material can operation condition. At this study, the phase field model and finite volume method is used to simulate the solidification of a seed in the overcooling liquid. The problem can be solved by general personal computer with the use of adaptive mesh refinement code developed by our lab.
The solidification of dendrite is divided into three part in this study. The first part is the dendritic growth case without any convection. The dendritic growth is controlled by the initial overcooling and seed condition. The similarity of dendrite at several overcooling is successful to simulate by proper choose of rescaling. The difference caused by dimensionless large thermal boundary layer is also observed in our simulation.
The following part is about the dendritic growth under forced convection. The difference of flow effect between 2D and 3D is discussed followed by the effect of flow strength and initial condition.
The final part is the dendritic growth under natural convection. The Peclet number at several gravitational strengths and overcooling shows good comparison with classic theory in our simulation. The morphology also has the good agreement with the experiment observation. The difference between forced and natural convection is discussed by morphology and flow field comparison. The strength and orientation of gravity is also discussed in this study.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:45:16Z (GMT). No. of bitstreams: 1
ntu-99-F92524053-1.pdf: 4778452 bytes, checksum: 17699a884fd1a5c596a2a8f2db1ff1e5 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents中文摘要................................I
英文摘要...............................III
目錄.................................IV
符號說明...............................VI
表目錄.................................IX
圖目錄................................X
第一章 緒論...............................1
1.1 研究動機.............................1
1.2 文獻回顧.............................4
1.2.1 樹枝狀晶體的固化理論...................4
1.2.2 數值方法.........................10
第二章 物理模式與數值方法.......................15
2.1 固化問題的物理模式.......................15
2.2 相場模式的介紹.........................20
2.3 無因次化之主導方程式.....................27
2.4 數值方法-有限體積法......................30
2.5 數值方法-適應性網格......................34
2.6 程式流程介紹.........................41
第三章 結果與討論...........................46
3.1 樹枝狀晶體的固化(純擴散)....................47
3.1.1 純擴散-驗證......................48
3.1.2 純擴散-不同過冷度與初始條件的影響............53
3.2 樹枝狀晶體的固化(強制對流)...................62
3.2.1 強制對流-驗證......................62
3.2.2 強制對流-二維與三維之比較................66
3.2.3 強制對流-低過冷下,不同初始條件的影響..........72
3.3 樹枝狀晶體的固化(自然對流)...................77
3.3.1 自然對流-驗證-重力與過冷度之關系.............77
3.3.2 自然對流-重力強度對形態與流場強度之影響........82
3.3.3 自然對流-重力方向的影響與不同對流形態之討論....87
第四章 結論與未來展望.........................97
參考文獻...............................99
dc.language.isozh-TW
dc.subject相場模式zh_TW
dc.subject樹枝狀晶體zh_TW
dc.subjectdendriteen
dc.subjectphase field modelen
dc.title三維適應性相場模式在樹枝狀晶體生長之研究zh_TW
dc.titleThree Dimensional Adaptive Phase Field Modeling of Dendritic Growthen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee藍崇文,林祥泰,王大銘,何國川,楊德良,陳志臣
dc.subject.keyword相場模式,樹枝狀晶體,zh_TW
dc.subject.keywordphase field model,dendrite,en
dc.relation.page104
dc.rights.note有償授權
dc.date.accepted2010-08-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
4.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved