請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45722完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 馮哲川(Zhe-Chuan Feng) | |
| dc.contributor.author | Yu-Cheng Yang | en |
| dc.contributor.author | 楊喻丞 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:45:07Z | - |
| dc.date.available | 2011-08-12 | |
| dc.date.copyright | 2010-08-12 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-06 | |
| dc.identifier.citation | [1] http://old-www.ansto.gov.au/natfac/asrp4.html
[2] http://www.nsrrc.org.tw/english/lightsource.aspx [3] http://www.slac.stanford.edu/gen/edu/educatiorn.html [4] Synchrotron Light to Explore Matter, Copyright MediaSoft, ESRF and Springer-Verlag (2000). [5] J. Schneider, G. Kaindl, C. Kunz, H. Dosch, D. Lour, E. J. Mittemeijer, X-rays (Synchrotron Radiation), Advanced Analysis of Materials, pp. 238-243. [1] H. Fricke, Phys. Rev., 16, 202 (1920). [2] G. Hertz, Z. Phys., 3, 19 (1920). [3] D. Coster, Z. Phys., 25, 83 (1924). [4] A. E. Lindh, Z. Phys., 6, 303 (1921); 31, 210 (1925). [5] G. A. Lindsay, C. R. Acad. Sci. (Paris), 175, 150 (1922). [6] W. Kossel, Z. Phys., 1, 119 (1920); 2, 470 (1920). [7] B. B. Ray, Z. Phys., 55, 119 (1929). [8] B. Kievet and G. A. Lindsay, Phys. Rev., 36, 648 (1930). [9] J. D. Hanawalt, Z. Phys., 70, 20 (1931); Phys. Rev., 37, 715 (1931). [10] R. de L. Kronig, Z. Phys., 70, 317 (1931). [11] E. A. Stern, Phys. Rev. B, 10 3027 (1974). [12] R. de L. Kronig, Z. Phys., 75,468 (1932). [13] H. Peterson, Z. Phys., 76, 768 (1932); 80, 258 (1933); 98, 569 (1936). [14] A. I. Kostarev, Zh. Eksp. Teor. Fiz., 11, 60 (1941); 19, 413. [15] D. E. Sayers, E. A. Stern, and F. W. Lytle, Phys. Rev Lett., 27, 1204 (1971). [16] D. E. Sayers, F. W. Lytle, and E. A. Stern, Adv. X-Ray Anal., 13, 248 (1970). [17] D. E. Sayers, F. W. Lytle, and E. A. Stern, Phys Rev. Lett., 27, 1204 (1971). [18] P. Eisenberger, B. Kincaid, S. Hunter, D. Sayers, E. A. Stern, and F. W. Lytle, in Proceedings of the IV International Conference on Vacuum Ultraviolet Radiation Physics, E. E. Koch, R. Haensel and C. Kunz (Eds), Pergamon, Oxford, 1974. [19] E. A. Stern, Contemp. Phys., 19, 289 (1978). [20] P. M. Eisenberger, and B. M. Kincaid, Science, 200, 1441 (1978). [21] D. R. Sandstrom and F. W. Lytle, Ann. Rev. Phys. Chem., 30, 215 (1979). [22] S. P. Cramer and K. O. Hodgson, in Progress in Inorganic Chemistry, Vol. 25, S. J. Lippard (Ed.), Wiley, New YORK, 1979, p. 1. [23] L. Powers, Biochem. Biophys. Acta, 683, 1 (1982). [24] P. A. Lee, P. H. Citrin, P. Eisenberger, and B. M. Kincaid, Rev. Mod. Phys., 53, 769 (1981). [25] T. M. Hayes and J. B. Boyce, in Solid State Physics, Vol. 37, H. Ehrenreich, F. Seitz, and D. Turnbull (Eds.), Academic, New York, 1982, p. 173. [26] J. E. Enderby, D. M. North, and P. A. Egelstaff, Philos. Mag., 14, 961 (1966). [27] P Fuoss, P. Eisenberger, W. K. Warburton and A. Bienenstock, Phys. Rev. Lett., 46, 1537 (1981). [28] E. A. Stern, C. E. Bouldin, B. von Roedern, and J. Azoulay, Phys. Rev. B, 27, 6557 (1983). [29] Matthew Newville, “Fundamentals of XAFS“, Consortium for Advanced Radiation Sources, Revision 1.7 July 23, 2004 [30] G. Bauer and W. Richter, Optical characterization of Epitaxial Semiconductor Layers, Springer (1996). [31] D. Nishikida, E. Nishio and R. W.Hannah, Selected Application of Modern FT-IR Techniques, Kodansha Ltd (1995). [32] Dieter K.Schroder, Semiconductor Material and Device Characterization, John Wiley & Sons (1990). [33] Bruker Optics: http://www.brukeroptics.com/ [34] Brian C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, CRC Press, Inc. (1996). [35] C. J. Sun, J. W. Yang, Q. Chen, B. W. Lim, M. Zubair Anwar, M. Asif Khan, H. Temkin, D. Weismann and I. Brenner, Appl. Phys. Lett. 69, 668 (1996). [36] D. W. Berrman, Phys. Rev. 130, 2193 (1963) [37] G. Yu, H. Ishikawa, M. Umeno, T. Egawa, J. Watanabe, T. Soga and T. Jimbo, Appl. Phys. Lett 73, 1472 (1998). [38] L. Rayleigh, G. G. Stokes, Proc. Royal Soc. London 75, 199 (1905). [39] A. Smekal, Naturwiss. 11, 873 (1923). [40] G. Herzberg, Infrared and Raman spectra of Polyatomic Molecules, Van Nostrand, New York (1945). [41] Sir C. V. Raman, K. S. Krishnan, Ind. J. Phys. 2, 387 (1928). [42] Sir C. V. Raman, K. S. Krishnan, Nature 121, 501 (1928). [43] G. S. Landsberg, L. I. Mandelstam, Naturwiss. 16, 557 (1928). [44] G. Placzek, in Handbuck der Radiologie, ed. E. Marx, Vol. 6, part2, p. 209, Akademische Verlagsgesellschaft, Leipzig (1934). [45] Michael J. Pelletier, Ed., Analytical Applications of Raman Spectroscopy, Blackwell Science: Cambridge, MA, (1999). [46] Philip Kim, Teri W. Odom, Jin-Lin Huang, and Charles M. Lieber, Physical Review Letter 82, 6, 1225-1228 (1999). [47] Bockrath M, Cobden DH, McEuen PL, et al. Science.275, 1922(1997). [48] Derek A. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules, Wiley, England (2002). [49] R. Saito, G. Dresselhaus, and MS Dresselhaus., Phys. Rev. B 61, 2981(2000). [50] A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus, A. K. Swan, M. S. Unlu, B. B. Goldberg, M. A. Pimenta, J. H. Hafner, C. M. Lieber, and R. Saito , Phys. Rev. B 65, 155412 (2002). [51] R. Saito, A. Jorio, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G.Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 64, 085312 (2001). [1] P.W. Kruse In: R.K. Willardson and A.C. Beer, Editors, Semiconductors and Semimetals, 18, Academic Press, New York (1981). [2] T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks and R.B. James, Mater. Sci. Eng. Rep., 32 103 (2001). [3] A.S. Alikhanian, V.N. Guskov, A.M. Natarovsky, J.H. Greenberg, M. Fiederle and K.W. Benz, J. Crystal Growth, 240 73 (2002). [4] B.M. Basol, V.K. Kapur and M.L. Ferris, J. Appl. Phys., 66 1816 (1989). [5] K.L. Chopra, P.D. Paulson and V. Dutta, Sol. Cells, 12 69(2004). [6] A. Medvid, A. Mychko, V. Gnatyuk, S. Levytskyi, Yu. Naseka, Optical Materials 32, 836 (2010) [7] L. Turjanska, P. Höschl, E. Belas, R. Grill, J. Franc and P. Moravec, Nucl. Instr. and Meth. A, 458 90 (2001). [8] G. Li, X. Zhang, H. Hua and W. Jie, J. Electron. Mater., 34 1215 (2005). [9] R. Triboulet, in: H.J. Scheel, T. Fukuda (Eds.), Crystal Growth Technology, 373 (2003). [10] A. Kisiel, G. Dalba, P. Fornasini, M. Podhorny, PHSICAL REVIEW B, 39, 11 (1989) [11] G. Li, W. Jie, H. Hua and Zhi Gu, Prog. Cryst. Growth Charact. 46 85 (2003). [12] Guoqiang Li, Shao-Ju Shih, Yizhong Huang, Tao Wang and Wanqi Jie, J. Crystal Growth, 311 85 (2008). [13] T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, and R.B. James, Mater. Sci. Eng. R, 32 103 (2001). [14] B.A. Brunett, J.M. Van Scyoc, N.R. Hilton, J.C. Lund,R.B. James, and T.E. Schlesinger, IEEE Trans. Nucl. Sci., 46 237 (1999). [15] B.A. Brunett, J.M. Van Scyoc, T.E. Schlesinger, and R.B. James, Nucl. Instrum. Methods A, 458 76 (2001). [16] P.N. Luke, M. Amman, and J.S. Lee, IEEE Trans. Nucl. Sci. 51 1199 (2004). [17] M.C. Duff, D.B. Hunter, A. Burger, M. Groza, V. Buliga, and D.R. Black, Appl. Surf. Sci., 254 2889 (2008). [18] A. Burger, K. Chattopadhyay, H. Chen, X. Ma, J.-O. Ndap, M. Schieber, T.E. Schlesinger, H.W. Yao, J. Erickson, and R.B. James, Nucl. Instrum. Methods A, 448 586 (2000). [19] A.E. Bolotnikov, G.S. Camarda, G.A. Carini, Y. Cui, L. Li, and R.B. James, Nucl. Instrum. Methods A, 579 125 (2007). [20] M. Schieber, R.B. James, H. Hermon, A. Vilensky, I. Baydjanov, M. Goorsky, T. Lam, E. Meerson, H.W. Yao, J. Erickson, E. Cross, A. Burger, J.O. Ndap, G. Wright, and M. Fiederle, J. Cryst. Growth, 231 235 (2001). [21] C.M. Greaves, B.A. Brunett, J.M. Van Scyoc, T.E. Schlesinger, and R.B. James, Nucl. Instrum. Methods A, 458 96 (2001). [22] M. Sridharan, Sa.K. Narayandass, D. Mangalaraj, and H. Chul Lee, Vacuum, 70 511 (2003). [23] T. Wang, W. Jie, J. Zhang, G. Yang, D. Zeng, Y. Xu, S. Ma, H. Hua, and K. He, J. Cryst. Growth, 304 313 (2007). [24] D. Zeng, W. Jie, G. Zha, T. Wang, and G. Yang, J. Cryst. Growth, 305 50 (2007). [25] T. Wang, W. Jie, and D. Zeng, Mater. Sci. Eng. A-Struct., 472 227 (2008). [26] A.S. Pine and G. Dresselhaus, Phys. Rev. B, 4 356 (1971). [27] P. Rudolph and M. Mu¨ hlberg, Mater. Sci. Eng. B, 16 8 (1993). [28] M. Newville, P. Livins, Y. Yacoby, J.J. Rehr, and E.A. Stern, Phys. Rev. B, 47 14126 (1993). [29] J. Mustre de Leon, J.J. Rehr, S.I. Zabinsky, and R.C. Albers, Phys. Rev. B, 44 4146 (1991). [30] J.J. Rehr and R.C. Albers, Phys. Rev. B, 41 8139 (1990). [31] J.J. Rehr, J. Mustre de Leon, S.I. Zabinsky, and R.C. Albers, J. Am. Chem. Soc., 113 5135 (1991). [32] J.J. Rehr, S.I. Zabinsky, and R.C. Albers, Phys. Rev. Lett., 69 3397 (1992). [33] E.A. Stern, M. Newville, B. Ravel, Y. Yacoby, and D. Haskel, Physica B, 117, 208 (1995). [34] D. N. Talwar, Z. C. Feng, P, Becla, Phys. Rev. B, 48 17064 (1993). [35] N. Vagelatos, D. Wehe and J. S. King, J. Chem. Phys., 60 3613 (1974). [36] J. M. Rowe, R. M. Nicklow, D. L. Price and K. Zanio, Phys. Rev. B., 10 671 (1974) [37] H. Narada and S.Narita, J. Phys. Soc. Jpn., 30 1628 (1970). [38] L. K. Vodop’yanov, E. A. Vinogradov, A. M. Blinov and V. A. Rukavishnikov, Fiz. Tverd. Tela (Leningrad), 14 268 (1972). [39] E. A. Vinogradov and L. K. Vodop’yanov, Fiz. Tverd. Tela (Leningrad), 17 3161 (1975). [40] Samantha A. Hawkins, Eliel Villa-Aleman, Martine C. Duff, Doug B. Hunter, Arnold Burger, Michael Groza, Vladimir Buliga and David R. Black, J. Electron. Mater., 37 1438 (2008). [41] K. Prasada Rao, O. Md. Hussain , K.T.R. Reddy, P.S. Reddy, S. Uthanna, B.S. Naidu, P.Jayarama Reddy, Optical Materials 5, 63 (1996) [42] Lucile C. Teague, Samantha A. Hawkins, Martine C. Duff, Michael Groza, Vladimir Buliga and Arnold Burger, J. Electron. Mater. (2009). [43] V. Koteski, H. Haas, E. Holub-Krappe, N. Ivanovic and H. -E. Mahnke, Journal of alloys and compounds, 26 138 (2004). [44] Motta, N., Balzarotti, A., Letardi, P., Kisiel, A., Czyzyk, M. T., Zimnal-Starnawska, M. and Podgorny, M., J. Crystal Growth 72 205 (1985). [45] Yu Li Wu, Zhe Chuan Feng, Jyh-Fu Lee, P. Becla, and Weijie Lu, SPIE, 7449-25 2009 [1] Osvaldo Vigil-Galan, Lıdice Vaillant, Rogelio Mendoza-Pe´rez, Gerardo Contreras-Puente, and Julio Vidal-Larramendi, JOURNAL OF APPLIED PHYSICS, 90, 7 ( 2001) [2] V. Babentsov, V.Boiko, G.A.Schepelskii, R.B.James, J.Franc, J.Prochazka, P.Hlıdek, Journal of Luminescence, 130, 1425 (2010) [3] C. R. Corwine, J. R. Sites, T. A. Gessert, W. K. Metzger, P. Dippo, Jingbo Li, A. Duda, and G. Teeter, Appl. Phys. Lett. 86, 221909 (2005). [4] D. Shvydka, J. P. Rakotoniaina, and O. Breitenstein, Appl. Phys. Lett. 84, 729 (2004). [5] Y. Yan, M. M. Al-Jassim, and K. M. Jones, J. Appl. Phys. 94, 2976 (2003). [6] M. J. Romero, D. S. Albin, M. M. Al-Jassim, X. Wu, H. R. Moutinho, and R. G. Dhere, Appl. Phys. Lett. 81, 2962 (2002). [7] M. J. Soares, M. C. do Carmo, Proc. SPIE 4469, 57 (2001). [8] J. Huerta-Ruelas, M. Lopez-Lopez, and O. Zelaya-Angel, Jpn. J. Appl. Phys., 39, 1701 (2000). [9] Y.-H. Kim, S.-Y. An, J.-Y. Lee, I. Kim, K.-N. Oh, S.-U. Kim, M.-J. Park, and T.-S. Lee, J. Appl. Phys. 85, 7370 (1999). [10] C. Heske, U. Winkler, H. Neureiter, M. Sokolowski, R. Fink, E. Umbach, Ch. Jung, and P. R. Bressler, Appl. Phys. Lett. 70, 1022 (1997). [11] Z. C. Feng, H. Gong, W. J. Choyke, N. J. Doyle, and R. F. C. Farrow, J. Mater. Sci., Mater. Electron. 7, 23 (1996). [12] Yu. P. Gnatenko, A. O. Borshch N. Kukhtareva, T. Kukhtareva I. O. Faryna, V. I. Volkov, P. M. Bukivskij, R. V. Gamernyk, V. I. Rudenko, S. Yu. Paranchych and L. D. Paranchych, JOURNAL OF APPLIED PHYSICS, 94, 8 (2003) [13] D. E. Ashenford, P. Devine, J. H. C. Hogg, B. Lunn, and C. G. Scott, J. Phys. Condens. Matter, 3, 245 (1991). [14] D. E. Ashenford, P. Devine, J. H. C. Hogg, C. G. Scott, and M. Verma, J. Cryst, Growth, 117, 233 (1992). [15] H. Tatsuoka, H. Kuwabara, Y. Nakanishi, and H. Fujiyasu, J. Cryst. Growth, 117, 554 (1992). [16] G. M. Khattak, G. W. Matthews, C. G. Scott, and M. Yousaf, APPLIED PHYSICS LETTERS, 84, 20 (2004) [17] M. Newville, P. Livins, Y. Yacoby, J.J. Rehr, and E.A. Stern, Phys. Rev. B, 47 14126 (1993). [18] A. Kisiel, G. Dalba, P. Fornasini, M. Podhorny, J. Oleszkiewicz, F. Rocca, E. Burattini, PHSICAL REVIEW B, 39, 11 (1989) [19] A. Kisiel, A-I. Ali Dahr, P. M. Lee, G. Dalba, P. Fornasini, E. Burattini, PHSICAL REVIEW B, 44, 10 (1991) [20] Z. C. Feng, H. Gong, W. J. Choyke, N. J. Doyle, R. F. C. Farrow, J. Mater. Sci.: Materials in Electronics 7, 23-26 (1996). [21] Z. C. Feng, A. Mascarenhas, W. J. Choyke, R. F. C. Farrow, F. A. Dhirland, and W. J. Takei, Appl. Phys. Lett. 47, 24 (1985). [22] Edward J. Danielewicz and Paul D. Coleman, APPLIED OPTICS, 13, 5 (1974) [23] Sharat Chandra1, S Tripura Sundari, G Raghavan and A K Tyagi, J. Phys. D:,Appl. Phys., 36, 2121 (2003) Reference [1] Dawid Toton, Jiangping He, Grzegorz Goryl, Jacek J Kolodziej, SzymonGodlewski, LevKantorovich1 and Marek Szymonski, J. Phys. Condens. Matter 22, 265001 (2010) [2] R. F. C. Farrow and A. J. Noreika, in Characterization and Behavior of Materials with Submicron Dimensions, edited by J. T. Waber (World Scientific, Singapore,1993), p.130. [3] J. Webb and R. Rousina, in Semiconductor Interfaces and Microstructures, edited by Z. C. Feng (World Scientific, Singapore, 1992), p. 199. [4] R. M. Biefeld and G. A. Hebner, Appl. Phys. Lett. 57, 1563 (1990). [5] D. K. Gaskill, G. T. Stauf and N. Bottka, Appl. Phys. Lett. 58, 1905 (1991). [6] C. H. Chen, Z. M. Fang and G. B. Stringfellow, Appl. Phys. Lett. 58, 2532 (1991). [7] M. A. McKee, B. S. Yoo and R. A. Stall, J. Crystal Growth 124, 286 (1992). [8] R. M. Graham, N. J. Mason, P. J. Walker, D. M. Frigo and R. W. Gedridge, Jr., J. Crystal Growth 124, 363 (1992). [9] M. Behet, B. Stoll, W. Brysch and K. Heime, J. Crystal Growth 124, 377 (1992). [10] Y. H. Choi, R. Sudharsanan, C. Besikci, E. Bigan and M. Razeghi, MRS. Res. Soc. Symp. Proc. 281, 375 (1993). [11] B. S. Yoo, M. A. McKee, S. G. Kim and E. H. Lee, Solid State Commun. 88, 447 (1993). [12] K. C. Baucom and R. M. Biefeld, Appl. Phys. Lett. 64, 3021 (1994). [13] J. Shin, Y. Hsu, T. C. Hsu, G. B. Stringfellow and R. W. Gedridge, J. Electron. Mater. 24, 1563 (1995). [14] E. Woelk, H. Jurgensen, R. Rolph and T. Zielinski, J. Electron. Mater. 24, 1715 (1995). [15] Z. C. Feng, S. Perkowitz, T. S. Rao and J. B. Webb, J. Appl. Phys. 68, 5363 (1990). [16] F. H. Pollak, in Analytical Raman Spectroscopy, edited by J. G. Grasselli and B. J. Bulkin (Willey, New York, 1991), p. 137. [17] T. Ohshima, S. Yamuchi and T. Tariu, Inst. Phys. Conf. Ser. 106, 241 (1990). [18] J. Mustre de Leon, J.J. Rehr, S.I. Zabinsky, and R.C. Albers, Phys. Rev. B, 44 4146 (1991). [19] J.J. Rehr and R.C. Albers, Phys. Rev. B, 41 8139 (1990). [20] J.J. Rehr, J. Mustre de Leon, S.I. Zabinsky, and R.C. Albers, J. Am. Chem. Soc., 113 5135 (1991). [21] J.J. Rehr, S.I. Zabinsky, and R.C. Albers, Phys. Rev. Lett., 69 3397 (1992). [22] E.A. Stern, M. Newville, B. Ravel, Y. Yacoby, and D. Haskel, Physica B, 117, 208 (1995). [23] ShiqiangWei, Kunquan Lu, Chenxi Li,Wenjie Zhong,WenshengYan, Tomaya Uruga,Wei Chen, Xiaojuan Niu, ZhonghuaWu, Dongliang Chen and Zhihu Sun Physica Scripta. 115, 399 (2005) [24] J. Wagner, P. Koidl and R. C. Newman, Appl. Phys. Lett. 91, 1729 (1991). [25] N K UDAYASHANKAR and H L BHAT, Bull. Mater. Sci., 26, 692 (2003). [1] Andersson M, Osterlund L, Ljungstrom S and Palmqvist A, J. Phys. Chem., B, 414 338 (2002) [2] Sung Y-M, Lee J-K and Chae W-S, Cryst. Growth Des., 6, 805 (2006) [3] Sung Y-M and Lee J-K, Cryst. Growth Des., 4, 737 (2004) [4] Rothschild A, Levakov A, Shapira Y, Ashkenasy N and KomemY, Surf. Sci. 456 532 (2003) [5] Appell D, Nature, 419, 553 (2002) [6] Park N-G, Van de Lagemaat J and Frank A J, J. Phys. Chem. B, ,104, 8989 (2000) [7] Jung-Chul Lee, Kyung-Soo Park, Tae-Geun Kim, Heon-Jin Choi and Yun-Mo Sung Nanotechnology, 17, 4317 (2006) [8] Miao Z, Xu D, Quyang J, Guo G, Zhao X and Tang Y, Nano Lett., 2, 717 (2002) [9] Kasuga T, Hiramatsu M, Hoson A, Sekino T and Niihara K, Adv. Mater., 11, 1307 (1999) [10] Yao B, Chan Y, Zhang X, Zhang W, Yang Z and Wang N, Appl. Phys. Lett., 82, 281 (2003) [11] BYOUNG-SEONG JEONG GROWTH AND FERROMAGNETIC SEMICONDUCTING PROPERTIES OF TITANIUM DIOXIDE THIN FILMS: AN OXIDE-DILUTED MAGNETIC SEMICONDUCTOR (O-DMS) FOR SPINTRONICS UNIVERSITY OF FLORIDA (2004) [12] G. Fronzoni, R. Francesco, M. Stener and M. Causa, J. Phys. Chem. B, 110, 9899 (2006) [13] B. Poumellec, P. J. Durham and G. Y. Guo, J. Phys. Condens. Matter., 3, 8195 (1991) [14] D. M. Pickup, A. Ensanya, A. A. Neel, A. Robert, M. Moss, A. Kate, M. Wetherall, A. P. Guerry, A. Mark, E. Smith, A. Jonathan, C. Knowles, A Robert and J. Newport, Mater Sci, Mater Med, 19,1681 (2008) [15] G. Mountjoy, D. M. Pickup, G. W. Wallidge, R. Anderson, J. M. Cole, R. J. Newport and M. E. Smith, Chem. Mater, 11, 1253 (1999) [16] W F Zhang, Y L He, M S Zhang, Z Yin and Q Chen J. Phys. D: Appl. Phys., 33, 912 (2000). [17] Balachandran U and Eror N G, J. Solid State Chem., 42, 276 (1982) [18] H. Ohno, H. Munekata, T. Penney, S. van Molnar, L.L. Chang, Phys. Rev. Lett., 68, 2664 (1992). [19] J. K. Furdyna, J. Appl. Phys., 64, 29 (1998). [20] S.A.Touat, F.Litimein, A.Tadjer, B.Bouhafs, Physica B, 405 625 (2010). [21] W. F. Pong R. A. Mayanovic, J. K. Kao, H. H. Hsieh, J. Y. Pieh, Y. K. Chang, K. C. Kuo, P. K. Tseng and J. F. Lee, PHYSICAL REVIEW B, 55, 12 (1997) [22] G. van der Laan, J. Zaanen, G. A. Sawatzky, R. Karnatak, and J. M. Esteva, Phys. Rev. B, 33, 4253 (1986); G. van der Laan, B. T. Thole, G. A. Sawatzky, and M. Verdaguer, ibid. 37, 6587 (1988). [23] G. van der Laan and I. W. Kirkman, J. Phys. Condens. Matter, 4, 4189 (1992). [24] G. Ungaro, G. Le Roux, R. Teissier, J.C. Harmand, Electron. Lett., 35, 1246 (1999). [25] W. Ha, V. Gambin, M. Wistey, S. Bank, S. Kim, J.S. Harris, Proc. SPIE, 4651, 42 (2002). [26] S. Wicaksono, S.F. Yoon, W.K. Loke, K.H. tan, B.K. Ng, J. Appl. Phys., 99, 104502 (2006). [27] H. Luo, J.A. Gupta, H. C Liu, Appl. Phys. Lett., 86, 211121 (2005). [28] S. Kurtz, J. Webb, L. Gedvilas, D. Friedman, J. Geisz, J. Olson, R. King, D. Joslin, N. Karam, Appl. Phys. Lett. 78, 748 (2001). [29] L.F. Bian, D.S. Jiang, P.H. Tan, S.L. Lu, B.Q. Sun, L.H. Li, J.C. Harmand, Solid State Comm. 132, 707 (2004). [30] J.C. Harmand, G. Ungaro, L. Largeau, G. Le Roux, Appl. Phys. Lett. 77, 2482 (2000). [31] K. Volz, V. Gambin, W. Ha, M.A. Wistey, H. Yuen, S. Bank, J.S. Harris, J. of Crystal Growth 251, 360 (2003). [32] H.B. Yuen, S.R. Bank, M.A. Wistey, J.S. Harris, J. Appl. Phys. 96, 6375 (2004) [33] S. Wicaksono, S.F. Yoon, K.H. Tan, W.K. Cheah, J. of Crystal growth, 274, 355. (2005) [34] Ta-Chun Ma, Yan-Ting Lin, Hao-Hsiung Lin, Journal of Crystal Growth, 310, 2854 (2008) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45722 | - |
| dc.description.abstract | 同步加速器光源是二十一世紀尖端科學研究不可或缺的實驗利器,已廣泛應用在材料、生物、醫藥、物理、化學、化工、地質、考古、環保、能源、電子、微機械、奈米元件等基礎與應用科學研究,因而被稱為現代的「科學神燈」。
光學量測對於分析半導體材料具有很重要的地位,尤其是對於材料的結構、特性,甚至是物理機制。而近幾年的半導體材料,由於它的材料特性非常適合應用在現今生活的電器設備用品上,譬如:發光二極體、積體電路原件…等,所以被廣泛而且深入的研究,縱使已經有不少上市產品應用半導體為材料,但是仍然有許多的問題與困難需要解答與突破,因此,我們將針對目前的許多挑戰做研究。 拉曼散射與紅外光譜是在研究半導體材料的晶格振動,我們可以藉由晶格的振動來判斷研究的材料或樣品的品質和成分,由於拉曼散射實驗與紅外光譜是非破壞性的光學量測技術,非常的方便且不需繁雜的事前準備或樣品處理,所以我們著重二者的應用,將所研究的樣品經由拉曼散射實驗與紅外光譜做初步的瞭解與分析,可以幫助我們在樣品的結構、成長或各種變因上做調變,有效而且快速的提供正確且有用的資訊。 | zh_TW |
| dc.description.abstract | During the past decade, synchrotron light sources have become indispensable tools for advanced scientific research. Synchrotron light is used widely in basic and applied research throughout the fields of materials science, biology, medicine, physics, chemistry, chemical engineering, geology, archeology, environmental science, energy, electronics, micro-mechanical engineering, and nanotechnology. For this reason synchrotron light sources have been coined 'magic lamps of science'.
The optical measurements have the very important status regarding the analysis semiconducting material, particularly regarding material structure, characteristic, even is the physical mechanism. But semiconducting material in recent years, because its materials behavior is suitable to apply on the nowadays life electric appliance equipment thing, for example: Illumination diode, microcircuit original part…And so on, therefore by widespread and thorough research, even though had many going on the market product application semiconductor were already the material, but still had many questions and difficult needs to explain and to break through, therefore, we will aim at the present many challenges to do the research. Laman scatters and the infrared spectrum is in the research semiconducting material lattice vibration, we may judge the research because of the crystal lattice vibration the material or the sample quality and the ingredient, because Laman scatters the experiment and the infrared spectrum right and wrong destructive optical measurements technology, and the unusual convenience did not need numerous and diverse prepared or the sample preparation in anticipation, therefore our the two's application, will study emphatically the sample scattered the experiment and the infrared spectrum by way of Laman makes the preliminary understanding and the analysis, might help us because, in the sample structure, the growth or each kind changed on make the accent change, effective and fast provided correct and the useful information. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:45:07Z (GMT). No. of bitstreams: 1 ntu-99-R97941104-1.pdf: 2477259 bytes, checksum: 5736e44c062d5c2bdb0a23ab3afb2b8a (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Contents
口試委員會審書 I 誌謝 II 中文摘要 III 英文摘要 IV Contents VI List of Figures IX List of Tables XVI Chapter 1 Introduction……………………1 1.1 What is Synchrotron Radiation? 1 1.2 History of X-ray Sources 2 1.3 Generations of Synchrotron Radiation Sources 3 1.5 How is Synchrotron Light Produced? 6 1.6 publication list………………………7 Reference 8 Chapter 2 Experimental theoy and setup 9 2.1 X-ray absorption spectroscopy: principle and analysis 9 2.2 Fourier transform infrared spectroscopy 17 2.2.1 Experimental setup……………17 2.2.2 FTIR fitting theory………………21 2.3 Ramman scattering 27 2.4 X-ray diffeaction (XRD) 32 Reference 34 Chapter 3 X-ray Absorption and Raman Study on CdZnTe Ternary 40 3.1 Introduction 40 3.2 Experiment 42 3.3 Result and Discussion 43 3.3.1 Extended X-ray absorption fine structure (EXAFS)………………43 3.3.2 Raman scattering (RS)……………………………50 3.3.3 Photoluminescence (PL)……………………………55 3.3.4 X-ray diffraction (XRD)………………………58 3.4 Summary 61 Reference 63 Chapter 4 X-ray absorption and Infrared Study on CdTe film on InSb…………67 4.1 Introduction.....................67 4.2 Experiment 69 4.3 Result and discussion 71 4.3.1 Extended X-ray absorption fine structure (EXAFS) 71 4.3.2 Fourier transform infrared spectroscpy (FTIR) 76 4.4 Summary 87 Reference 87 Chapter 5 X-ray absorption and Infrared Study on Bulk InSb and InSb film on GaAs……………90 5.1 Introduction……………………90 5.2 Experiment………………………92 5.3 Result and discussion………………93 5.3.1 Extended X-ray absorption fine structure (EXAFS) 93 5.3.2 Raman-scattering (RS) 98 5.3.3 Fourier transform infrared spectroscopy (FTIR)……103 5.4 Summary 107 Reference 108 Chapter 6 Other material ………………………111 6.1 TiO2……………………………………111 6.2 ZnMnTe………………………………122 6.3 GaAsSbN………………………129 Reference…………………………132 | |
| dc.language.iso | en | |
| dc.subject | 碲化鎘 | zh_TW |
| dc.subject | X光吸收光譜 | zh_TW |
| dc.subject | 國家同步輻射中心 | zh_TW |
| dc.subject | 碲化鎘鋅 | zh_TW |
| dc.subject | 銻化銦 | zh_TW |
| dc.subject | CdZnTe | en |
| dc.subject | NSRRC | en |
| dc.subject | X-ray Absorption Spectroscopy | en |
| dc.subject | InSb | en |
| dc.subject | CdTe | en |
| dc.title | 同步輻射X光吸收光譜對銻化銦,碲化鎘及碲化鎘鋅的研究和相關光學性質分析 | zh_TW |
| dc.title | Synchrotron Radiation X-ray Absorption Spectroscopy and Optical Property Studies on CdTe, InSb Thin Films and Bulk CdZnTe | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李佳翰(Jia-Han Li),李坤彥(Kung-Yen Li) | |
| dc.subject.keyword | 國家同步輻射中心,X光吸收光譜,銻化銦,碲化鎘,碲化鎘鋅, | zh_TW |
| dc.subject.keyword | NSRRC,X-ray Absorption Spectroscopy,InSb,CdTe,CdZnTe, | en |
| dc.relation.page | 135 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-06 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
