請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45717完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳建彰(Jian-Zhang Chen) | |
| dc.contributor.author | Yu-Ching Hsu | en |
| dc.contributor.author | 徐郁晴 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:45:03Z | - |
| dc.date.available | 2020-08-05 | |
| dc.date.copyright | 2010-08-10 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-06 | |
| dc.identifier.citation | 第一章 參考文獻
[1-1] BP Statistical Review of World Energy June 2009. [1-2] 昱晶能源科技http://www.gintechenergy.com/ [1-3] 黃惠良編著”太陽電池”,五南圖書出版股份有限公司,台北,2008。 [1-4] 夏普公司(sharp) http://sharp-world.com/ [1-5] 顧鴻壽編著”太陽能電池元件導論”,全威圖書出版股份有限公司,台北,2008。 [1-6] 黃建昇,結晶矽太陽能電池發展近況,工業材料雜誌203期,2003,150. [1-7] M.Gratzel, “Photovoltaic and photoelectrochemical conversion of solar energy”,Phil. Trans. R. Soc. A 365 (2007) 993. [1-8] Kazmerski, L. L.,” Photovoltaics: A review of cell and module technologies” Renewable and Sustainable Energy Review 1 (1997) 71. [1-9] G. Dennler, C. Lungenschmied, H. Neugebauer, N.S. Sariciftci, M. Latre`che, G. Czeremuszkin and M.R. Wertheimer,” A new encapsulation solution for flexible organic solar cells” Thin Solid Films 511 (2006) 349. [1-10] C. W. Tang,”Two-layer organic photovoltaic cell”, Appl. Phys. Lett. 48 (1986) 183. [1-11] 莊嘉琛,“太陽能工程-太陽電池篇”,全華科技圖書股份有限公司,台北,2005。 [1-12] E. K. Putseiko, A. N. Terenin, “Photosensitization of the internal photoeffect in zinc oxide and other semiconductors by adsorbed dyes”, Zhur. Fiz. Khim. 23 (1949) 676. [1-13] H. Tsubomura, M. Matsumara, Nomuray, T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell ”, Nature 261 (1976) 402. [1-14] Brain O’Regan, Michael Gratzel, “A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 353 (1991) 737. [1-15] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel,” Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes”, J. Am. Chem. Soc.,115 (1993) 6382. 第二章 參考文獻 [2-1] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer and M. Gratzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies”, Nature 395 (1998) 583. [2-2] K. Tennakone, G. R. R. A. Kumara, A. R. Kumarasinghe, K. G. U. Wijayantha, P. M. Sirimanne, “A dye-sensitized nano-porous solid-state photovoltaic cell ” Semicond. Sci. Technol. 10 (1995) 1689. [2-3] B. O Regan, D. Schwartz, “Efficient dye-sensitized charge separation in a wide band gap p-n heterojunction ” J. Appl. Phys. 80 (1996) 4749. [2-4] J. Hagen, W. Schaffrath, P. Otschik, R. Fing, A. Bacher, H. W. Schmidt, D. Haarer, “Novel hybrid solar cells consisting of inorganic nanoparticles and an organic hole transport material” Synth. Met. 89 (1997) 215. [2-5] B. O Regan, F. Lenzmann, R. Muis, J. Wienke, “ A solid-state dye- sensitized solar cell fabricated with pressure treated P25 TiO2 and CuSCN:analysis of pore filling and IV characteristics” Chem. Mater. 14 (2002)5023. [2-6] R. Sanadeera, N. Fukuri, Y. Saito, T. Kitamura, Y. Wada, S. Yanagida, “Volatile solvent-free solid-state polymer-sensitized TiO2 solar cells with poly(3,4-ethylenedioxythiophene) as a hole-transporting medium”, Chem. Commun. (2005) 2259. [2-7] J. Bandara, H. Weerasinghe, “Solid-state dye-sensitized solar cell with p-type NiO as a hole collector”, Sol. Energy Mater. Sol. Cells 85 (2005) 385. [2-8] A. Konno, T. Kitagawa, H. Kida, G. R. A. Kumara, K. Tennakone, “The effect of particle size and conductivity of CuI layer on the performance of solid-state dye-sensitized photovoltaic cells”, Curr. Appl. Phys. 5 (2005) 149. [2-9] L. Schmidt-Mende, S. M. Zakeeruddin, M. Gratzel, “Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic ruthenium-dye”, Appl. Phys. Lett. 86 (2005) 013504 [2-10] H. J. Snaith, S. M. Zakeeruddin, L. Schmidt-Mende, C. Klein, M. Gratzel , “Ion-coordinating sensitizer in solid state hybrid solar cell”, Angew. Chem. Int. Ed. 44 (2005) 6413. [2-11] B. Li, L. Wang, B. Kang, P. Wang, Z. Qiu, ”Review of recent progress in solid-state dye-sensitized solar cells”, Sol. Energy Mater. Sol. Cells 90 (2006) 549. [2-12] Michael Gratzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A:Chemistry 164 (2004) 3. [2-13] Anderson N. A. and Lian T. Q. , “Ultrafast electron transfer at the molecule semiconductor nanoparticle interface”, Annu. Rev. Phys. Chem.56 (2005) 491. [2-14] X. -T. Zhang, H. -W. Liu, T. Taguchi, Q. -B. Meng, O. Sato, and A. Fujishima, “Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO2 films”, Sol. Energy Mater. Sol. Cells 81 (2004) 197. [2-15] L. Schmidt-Mende, U. Bach, R. Humphry-Baker, T. Horiuchi, H. Miura, S. Ito, S. Uchida, M. Gratzel, ”Organic dye for highly efficient solid state dye sensitized solar cells”, Adv. Mater.17 (2005) 813. [2-16] B. Peng, G. Jungmann, C. Jager, D. Haarer, H. W. Schmidt, M. Thelakkat, “Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells”, Coord. Chem. Rev.248 (2004) 1479. [2-17] M. Thelakkat, C. Shmitz, H. -W. Schmidt, ” Fully vapor deposition thin layer titanium dioxide solar cell”, Adv. Mater. 14 (2002) 577. [2-18] L. Kavan, M. Gratzel, “Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis”, Electrochim. Acta 40 (1995) 643. [2-19] Petra J. Cameron and Laurence M. Peter, “Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells”, J. Phys. Chem. B 107 (2003) 14394. [2-20] Sarmimala Hore, Rainer Kern, “Implication of device functioning due to back reaction of electrons via the conducting glass substrate in dye sensitized solar cells”, Appl. Phys. Lett.87 (2005) 263504. [2-21] M. Bailes, P. J. Cameron, K. Lobato, and L. M. Peter, “Determination of the density and energetic distribution of electron traps in dye-sensitized nanocrystalline solar cells”, J. Phys. Chem. B 109 (2005) 15429. [2-22] C. S. Karthikezan, M. Thelakkat, “Key aspects of individual layers in solid-state dye-sensitized solar cells and novel concepts to improve their performance”, Inorg. Chim. Acta 361 (2008) 635. [2-23] J.H. Yum, Peter Chen, M. Gratzel, and Mohammad K. Nazeeruddin, “Recent developments in solid-state dye-sensitized solar cells”, ChemSus Chem 1 (2008) 699. [2-24] H. J. Snaith, M. Gratzel, “The role of a schottky barrier at an electron-collection electrode in solid-state dye-sensitized solar cells”, Adv. Mater. 18 (2006) 1910. [2-25] H. J. Snaith, L. Schmidt-Mende, “Advances in liquid-electrolyte and solid-state dye-sensitized solar cell”, Adv. Mater. 19 (2007) 3187. [2-26] S. N. Chen, S.K. Deb, H. Witzke, Unpublished report on project SECSAC (Solar Energy Conversion and Storage Cell), Optel Corporation, Princeton, NJ, (1975–76). [2-27] S.K. Deb, S. Chen, Witzke, US Patents 4117510, 4080488, 4118246, and 4118247 (1978). [2-28]M. Gratzel, “Photoelectrochemical cells”, Nature 414 (2001) 338. [2-29] 張正華編著,”有機與塑膠太陽能電池 ”,五南圖書出版股份有限公司,台北,2007。 [2-30] Michael Gratzel, “Solar energy conversion by dye-sensitized photovoltaic cells”, Inorg. Chem. 44 (2005) 6841. [2-31] U. Diebold, ”The surface science of titanium dioxide ”, Surf. Sci. Rep., 48 (2003) 53 [2-32] G. V. Samsonov, The Oxide Handbook, IFI/Plenum Press, New York, 1982. [2-33] N. -G. Park, J. van de Lagemaat, A.J. Frank, “Comparison of dye-sensitized rutile and anatase-based TiO2 solar cells”, J. Phys. Chem. B 104 (2000) 8989. [2-34] Brian C. O’Regan, James R. Durrant, Paul M. Sommeling, and Nicolaas J. Bakker, “Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. 2. charge density, band edge shifts, and quantification of recombination losses at short circuit”, J. Phys. Chem. C 111 (2007)14001. [2-35] S. Ito, P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, M. Gratzel,” Control of dark currentin photo-electrochemical (TiO2/I--I3-) and dye-sensitized solar cells.”, Chem. Commun. 34 (2005) 4351. [2-36] P. M. Sommeling et al.,” Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye- sensitized solar cells” J. Phys. Chem. B 110 (2006) 19191. [2-37] Andreas Kay, Solar Cells Based on Dye-Sensitized Nanocrystalline TiO2 electrodes (1994). [2-38] Yanqin Wang, Humin Cheng, Yanzhong Hao, et al., “The Photo-electrochemistry of Nd3+-doped TiO2 nanocrystalline electrodes.”, J. Mater. Sci. Lett. 18 (1999) 127. [2-39] Yanqin Wang, Yanzhong Hao, Humin Cheng, et al. “The photo-electrochemistry of transition metal ion doped TiO2 nanocrystalline electrodes”, J. Mater. Sci. 34 (1999) 2773. [2-40] Y. Wang, Y. H., H. Cheng, J. MA, B. Xu, W. Li, S. Cai. “Photo-electrochemical properties of metal-ion-doped TiO2 nanocrystalline electrodes”, Thin Solid Films 349 (1999) 120. [2-41] K. Tennakone, V. P. S. Perera, I. R. M. Kottegoda, G. R. R. A. Kumara, “Dye-sensitized solid state photovoltaic cell based on composite zinc oxide tin (IV) oxide films”, J. Phys. D:Appl. Phys. 32 (1999) 374 [2-42] Kyung Hyun Ko, Young Cheol Lee, Young Jin Jung. “Enhanced efficiency of dye-sensitized TiO2 solar cells (DSSC) by doping of metal ions”, J. Colloid Interface Sci. 283 (2005) 482. [2-43] A. Kitiyanan, Susumu Yoshikawa. “The use of ZrO2 mixed TiO2 nanostructures as efficient dye sensitized solar cells electrodes”, Mater. Lett. 59 (2005) 4038. [2-44] Xujie Lu , Xinliang Mou , Jianjun Wu , Dingwen Zhang , Linlin Zhang , Fuqiang Huang , Fangfang Xu , Sumei Huang ” Improved-performance dye-sensitized solar cells using Nb-doped TiO2 electrodes efficient electron injection and transfer”, Adv. Funct. Mater. 20 (2010) 509. [2-45] M. K. Nazeeruddin, P. P., T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gratzel,, ”Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells”, J. Am. Chem. Soc., 123 (2001) 1613. [2-46] Nazeeruddin, M. K., Angelis, F. D., Fantacci, S., Sellon, A., Viscardi, G., Liska, P., Ito, S., Takeru, B., and M. Gratzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers” J. Am. Chem. Soc.127 (2005) 16835. [2-47] Cameron P J, Peter L M, Zakeeruddin S M, et al. “Electrochemical studies of the Co(III)/ Co(II)(dbbip)2 redox couple as a mediator for dye-sensitized nanocrystalline solar cells”, Coord. Chem. Rev. 248 (2004) 1447. [2-48] 孔凡太,戴松元,”染料敏化太陽電池研究進展 ”,第18卷第11期:(2006) 1409。 [2-49] Grra. Kumara, A. Konno, G.K.R. Senadeera, P.V.V. Jayaweera, Dbra. De Silva, K. Tennakone,” Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide”, Sol. Energy Mater. Sol. Cells 69 (2001) 195. [2-50] B. O’ Regan, D. T. Schwartz, “Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL‘NCS/CuSCN initiation and potential mechanisms”, Chem. Mater.10 (1998) 1501. [2-51] K. Tennakone, G.K.R. Senadeera, Dbra. De Silva, I.R.M. Kottegoda, “Highly stable dye-sensitized solid-state solar cell with the semiconductor 4CuBr3S(C4H9)2 as the hole collector”, Appl. Phys. Lett. 77 (2000) 2367. [2-52] G.R.A. Kumara, S. Kaneko, M. Okuya, K. Tennakone, “Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a CuI crystal growth inhibitor”, Langmuir 18 (2002) 10493. [2-53] V.P.S. Perera, K. Tennakone,” Recombination processes in dye-sensitized solid-state solar cells with CuI as the hole collector”, Sol. Energy Mater. Sol. Cells 79 (2003) 249. [2-54] T. Taguchi, X.T. Zhang, I. Sutanto, K. Tokuhiro, T.N. Rao, H. Watanabe, T. Nakamori,M. Uragami, A. Fujishima, “Improving the performance of solid-state dye-sensitized solar cell using MgO-coated TiO2 nanoporous film”, Chem. Commun. 19 (2003) 2480. [2-55] G.R.A. Kumara, M. Okuya, K. Murakami, S. Kaneko, V.V. Jayaweera, K. Tennakone, “Dye-sensitized solid-state solar cells made from magnesiumoxide-coated nanocrystalline titanium dioxide films enhancement of the efficiency”, J. Photochem. Photobiol. A: Chem. 164 (2004) 183. [2-56] Brian O' Regan, Frank Lenzmann, Ruud Muis, Jeannette Wienke, “A solid-state dye-sensitized solar cell fabricated with pressure-treated P25-TiO2 and CuSCN: analysis of pore filling and IV characteristics”, Chem. Mater. 14 (2002) 5023. [2-57] Jessica Kruger, Robert Plass, Le Cevey, Marco Piccirelli, Michael Gratzel, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination”, Appl. Phys. Lett. 79 (2001) 2085. [2-58] Jessica Kruger, Robert Plass, Michael Gratzel, “Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4'-dicarboxy-2,2'bipyridine) –bis(isothiocyanato) ruthenium (II) ”, Appl. Phys. Lett. 81 (2002) 367. [2-59] Xiaoming Fang, Tingli Ma, Guoqing Guan, Morito Akiyama,Tetsya Kida, Eiichi Abe, ” Performances characteristics of dye-sensitized solar cells based on counter electrodes with Pt films of different thickness”, Journal of Photochemistry and Photobiology A: Chemistry 164 (2004) 179. [2-60] http://www.newport.com [2-61] Cahen et al., “Nature of photovoltaic action in dye-sensitized solar cells” J. Phys. Chem. B 104 (2000) 2053. [2-62] L. Brus,“Model for carrier dynamics and photoluminescence quenching in wet and dry porous silicon thin films” Phys. Rev. B 53 (1996) 4649. 第三章 參考文獻 [3-1] 透明導電膜,楊明輝 藝軒圖書出版社(2006) [3-2] 材料分析,汪建民 中國材料學學會(2008) 第四章參考文獻 [4-1] X光繞射原理與材料結構,許樹恩、吳泰伯 中國材料學學會(2006)。 [4-2] E.S. Kwak, Wonmok L., Nam-Gyu P., Junkyung K. and Hyunjung L., ”Compact inverse-opal electrode using non-aggregated TiO2 nanoparticles for dye-sensitized Solar cells” Adv. Funct. Mater. 19 (2009) 1093 [4-3] Y. Yin, Y. Lu, B. Gates, Y. Xia, ”Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures” J. Am. Chem. Soc, 123 (2001) 8718. [4-4] Z. Z. Gu, S. Kubo, A. Fujishima, O. Sato, “Infiltration of colloidal crystal with nanoparticles using capillary forces: a simple technique for the fabrication of films with an ordered porous structure” Appl. Phys. A 74 (2002) 127. [4-5] Y. Tu, L. Zhou, Y. Zheng Jin, Chao Gao, Zhi Zhen Ye, Ye Feng Yang and Qing Ling Wang, ”Transparent and flexible thin films of ZnO-polystyrene nanocomposite for UV-shielding applications” J. Mater. Chem., 20 (2010) 1594. [4-6] 姚品全,王立民,姜穎宏,何浩千,陳禹誠,”以奈米TiO2製作色素增感型太陽電池工作電極之初步探討”,科學與工程技術期刊,第四卷,第一期,民國97年。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45717 | - |
| dc.description.abstract | We fabricated dye sensitized solar cells using hollow microsphere TiO2 photoelectrode made by polystyrene (PS) nanoparticle embedded TiO2 paste. This made significant improvement on the efficiency and short-circuit current of DSSCs. Two different sizes of PS nanoparticles were used, 400 nm and 1 um in diameter. The concentrations of PS nanoparticles, mixing ratios of polystyrene nanoparticle solutions and TiO2 pastes, and nanoparticle sizes are the fabrication parameters for study. The fabrication of DSCCs was started with a deposition of 100 nm compact TiO2 layer onto fluorine-doped tin oxide glass by e-beam evaporation. Then, porous TiO2 paste mixed with or without polystyrene nanoparticles was deposited on the compact TiO2 film using doctor-blade method. The sintering of porous TiO2 was taken place at 450 oC. During sintering, polystyrene balls evaporated, leaving abundant mount of cavities whose sizes depend on the mixing ratios of PS nanoparticle solutions and TiO2 pastes, as well as the polystyrene nanoparticle dimensions. Afterwards, the TiO2 electrodes were treated with TiCl4 solution, immersed in N719 dye solution, and assembled with Pt-coated FTO glass. At last, liquid electrolyte (E-Solar EL 100) was injected into the assembled cells. The current-voltage characteristics of solar cells were evaluated under AM1.5 simulated light using a Keithley 2000 electrometer. For DSSCs, made with 1 um diameter PS nanoparticle in TiO2 paste, the conversion efficiency reached 5.51% with short circuit current density of 12.2 mA/cm2. Compared to their counterparts made without the addition of PS nanoparticles in TiO2 pastes, the short circuit current and cell efficiency were both improved by 17%. The improvement of efficiency is positively correlated to the size of cavity created by polystyrene balls. Finally, we also used hollow microsphere TiO2 photoelectrode to make solid-state electrolyte dye-sensitized solar cells. The results were also discussed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:45:03Z (GMT). No. of bitstreams: 1 ntu-99-R97543024-1.pdf: 8168642 bytes, checksum: 28647e835e2d95ffa53c181657c8172d (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝.................................Ι
中文摘要...............................Ⅱ 英文摘要............................. ...Ⅲ 目錄............................. .....Ⅴ圖目錄...............................Ⅷ 表目錄...............................XV 第一章 簡介.............................1 1.1前言............................ .. ..1 1.2太陽能電池發展介紹.......................3 1.2.1矽晶圓太陽能電池.....................3 1.2.2化合物半導體型(Ⅲ-Ⅴ)太陽能電池..............4 1.2.3化合物半導體型(Ⅱ-Ⅵ族)太陽能電池.............4 1.2.4銅銦硒或銅銦鎵硒系列太陽能電池...............5 1.2.5有機薄膜太陽能電池.....................5 1.2.6染料敏化太陽能電池.....................6 1.3研究動機.............................7 第一章參考文獻............................8 第二章 基本原理與文獻回顧.....................10 2.1染料敏化太陽能電池......................10 2.1.1基本原理與架構......................10 2.2固態染料敏化太陽能電池....................15 2.2.1基本原理與架構......................15 2.2.2透明導電玻璃......................16 2.2.3二氧化鈦(TiO2)緻密層...................17 2.2.4光電極..........................17 2.2.4.1二氧化鈦的基本性質................18 2.2.4.2二氧化鈦晶相對DSSCs的影響............19 2.2.4.3奈米多孔隙二氧化鈦薄膜..............20 2.2.4.4摻雜(doping)的影響..................21 2.2.5敏化劑..........................23 2.2.6電解質..........................26 2.2.6.1液態電解質......................26 2.2.6.2膠態電解質....................27 2.2.6.3固態電解質....................28 2.2.6.4各種電解質的待解決問題..............31 2.2.7對電極..........................32 2.3太陽能電池電壓-電流輸出特性..................34 第二章參考文獻..........................37 第三章 樣品製備與量測分析儀器...................44 3.1材料與儀器..........................44 3.2樣品製備..........................46 3.2.1導電玻璃之清洗......................46 3.2.2二氧化鈦緻密層之成長..................46 3.2.3奈米多孔隙二氧化鈦薄膜之塗佈製程............47 3.2.4中孔性二氧化鈦薄膜之製備................48 3.2.5二氧化鈦薄膜之四氯化鈦處理................50 3.2.6染料調製........................51 3.2.7電解質之調配與製作....................51 3.2.8對電極之製作與電池量測組裝...............51 3.3量測分析儀器.........................54 3.3.1 X-ray粉末繞射儀.....................54 3.3.2掃描式電子顯微鏡....................54 3.3.3紫外光-可見光光譜儀(UV-Visible Spectrometer)........55 3.3.4太陽光模擬光源(Solar simulator)..............56 第三章參考文獻..........................57 第四章 實驗結果與討論.......................58 4.1液態電解質染料敏化太陽能電池...................58 4.1.1薄膜分析.........................58 4.1.1.1二氧化鈦緻密層...................58 4.1.1.2 奈米多孔隙二氧化鈦薄膜..............59 4.1.2電性分析........................62 4.2中孔性染料敏化太陽能電池...................66 4.2.1薄膜分析...........................66 4.2.2 光學特性分析.........................72 4.2.3電性分析........................77 4.3固態染料敏化太陽能電池.....................97 4.3.1薄膜分析.........................97 4.3.2電性分析.........................102 第四章參考文獻........................109 第五章 結論與未來工作.......................110 5.1結論............................110 5.1未來工作..........................110 | |
| dc.language.iso | zh-TW | |
| dc.subject | 中空微球 | zh_TW |
| dc.subject | 二氧化鈦 | zh_TW |
| dc.subject | 聚苯乙烯球 | zh_TW |
| dc.subject | 固態電解質 | zh_TW |
| dc.subject | 染料敏化太陽能電池 | zh_TW |
| dc.subject | dye-sensitized solar cells | en |
| dc.subject | TiO2 | en |
| dc.subject | Polystyrene balls | en |
| dc.subject | hollow microsphere | en |
| dc.subject | solid-state electrolyte | en |
| dc.title | 中孔性二氧化鈦微球於固態染料敏化太陽能電池之製備與特性研究 | zh_TW |
| dc.title | Fabrication and Characterization of Solid-State Dye Sensitized Solar Cells using Hollow Microsphere TiO2 Layers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊木榮,陳奕君,李偉立,吳育任 | |
| dc.subject.keyword | 二氧化鈦,聚苯乙烯球,固態電解質,染料敏化太陽能電池,中空微球, | zh_TW |
| dc.subject.keyword | TiO2,Polystyrene balls,dye-sensitized solar cells,solid-state electrolyte,hollow microsphere, | en |
| dc.relation.page | 111 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 7.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
