Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45714
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂紹俊(Shao-Chun Lu)
dc.contributor.authorYu-Tze Huangen
dc.contributor.author黃宇澤zh_TW
dc.date.accessioned2021-06-15T04:45:00Z-
dc.date.available2013-09-09
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-08-06
dc.identifier.citationAndersen, B., and Rosenfeld, M.G. (1994). Pit-1 determines cell types during development of the anterior pituitary gland. A model for transcriptional regulation of cell phenotypes in mammalian organogenesis. J Biol Chem 269, 29335-29338.
Arizmendi, C., Liu, S., Croniger, C., Poli, V., and Friedman, J.E. (1999). The transcription factor CCAAT/enhancer-binding protein beta regulates gluconeogenesis and phosphoenolpyruvate carboxykinase (GTP) gene transcription during diabetes. J Biol Chem 274, 13033-13040.
Bendall, H.H., Scherer, D.C., Edson, C.R., Ballard, D.W., and Oltz, E.M. (1997).
Transcription factor NF-kappaB regulates inducible Oct-2 gene expression in precursor B lymphocytes. J Biol Chem 272, 28826-28828.
Beutler, B., and Rietschel, E.T. (2003). Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 3, 169-176.
Botting, C.H., and Hay, R.T. (1999). Characterisation of the adenovirus preterminal protein and its interaction with the POU homeodomain of NFIII (Oct-1). Nucleic Acids Res 27, 2799-2805.
Cao, Z., Umek, R.M., and McKnight, S.L. (1991). Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev 5, 1538-1552.
Cha-Molstad, H., Young, D.P., Kushner, I., and Samols, D. (2007). The interaction of C-Rel with C/EBPbeta enhances C/EBPbeta binding to the C-reactive protein gene promoter. Mol Immunol 44, 2933-2942.
Chiu, F.L., and Lin, J.K. (2008). Tomatidine inhibits iNOS and COX-2 through suppression of NF-kappaB and JNK pathways in LPS-stimulated mouse macrophages. FEBS Lett 582, 2407-2412.
Chuang, T.H., and Ulevitch, R.J. (2004). Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat Immunol 5, 495-502.
Corcoran, L.M., Karvelas, M., Nossal, G.J., Ye, Z.S., Jacks, T., and Baltimore, D. (1993). Oct-2, although not required for early B-cell development, is critical for later B-cell maturation and for postnatal survival. Genes Dev 7, 570-582.
D'Souza, A., Jaiyesimi, I., Trainor, L., and Venuturumili, P. (2008). Granulocyte colony-stimulating factor administration: adverse events. Transfus Med Rev 22, 280-290.
Dale, D.C., Bonilla, M.A., Davis, M.W., Nakanishi, A.M., Hammond, W.P., Kurtzberg, J., Wang, W., Jakubowski, A., Winton, E., Lalezari, P., et al. (1993). A randomized controlled phase III trial of recombinant human granulocyte colony-stimulating factor (filgrastim) for treatment of severe chronic neutropenia. Blood 81, 2496-2502.
Deans, Z., Dawson, S.J., Buttery, L., Polak, J.M., Wallace, D., and Latchman, D.S. (1995). Direct evidence that the POU family transcription factor Oct-2 represses the cellular tyrosine hydroxylase gene in neuronal cells. J Mol Neurosci 6, 159-167.
Descombes, P., and Schibler, U. (1991). A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 67, 569-579.
Dong, B., and Zhao, F.Q. (2007). Expression of the Oct-2 transcription factor in mouse mammary gland and cloning and characterization of a novel Oct-2 isoform. Cell Tissue Res 328, 595-606.
Dunn, S.M., Coles, L.S., Lang, R.K., Gerondakis, S., Vadas, M.A., and Shannon, M.F. (1994). Requirement for nuclear factor (NF)-kappa B p65 and NF-interleukin-6 binding elements in the tumor necrosis factor response region of the granulocyte colony-stimulating factor promoter. Blood 83, 2469-2479.
Dunn, T.L., Ross, I.L., and Hume, D.A. (1996). Transcription factor Oct-2 is expressed in primary murine macrophages. Blood 88, 4072.
Falkenburg, J.H., Harrington, M.A., de Paus, R.A., Walsh, W.K., Daub, R., Landegent, J.E., and Broxmeyer, H.E. (1991). Differential transcriptional and posttranscriptional regulation of gene expression of the colony-stimulating factors by interleukin-1 and fetal bovine serum in murine fibroblasts. Blood 78, 658-665.
Geissmann, F., Manz, M.G., Jung, S., Sieweke, M.H., Merad, M., and Ley, K. (2010). Development of monocytes, macrophages, and dendritic cells. Science 327, 656-661.
Gilmore, G.L., DePasquale, D.K., Fischer, B.C., and Shadduck, R.K. (1995).
Enhancement of monocytopoiesis by granulocyte colony-stimulating factor: evidence for secondary cytokine effects in vivo. Exp Hematol 23, 1319-1323.
Gorrill, T.S., and Khalili, K. (2005). Cooperative interaction of p65 and C/EBPbeta modulates transcription of BKV early promoter. Virology 335, 1-9.
Granger, R.L., Hughes, T.R., and Ramji, D.P. (2000). Stimulus- and cell-type-specific regulation of CCAAT-enhancer binding protein isoforms in glomerular mesangial cells by lipopolysaccharide and cytokines. Biochim Biophys Acta 1501, 171-179.
Grenfell, S.J., Latchman, D.S., and Thomas, N.S. (1996). Oct-1 [corrected] and Oct-2 DNA-binding site specificity is regulated in vitro by different kinases. Biochem J 315 ( Pt 3), 889-893.
Hamilton, J.A. (1993). Rheumatoid arthritis: opposing actions of haemopoietic growth factors and slow-acting anti-rheumatic drugs. Lancet 342, 536-539.
Hareng, L., Meergans, T., von Aulock, S., Volk, H.D., and Hartung, T. (2003). Cyclic AMP increases endogenous granulocyte colony-stimulating factor formation in monocytes and THP-1 macrophages despite attenuated TNF-alpha formation. Eur J Immunol 33, 2287-2296.
Hartung, T., Pitrak, D.L., Foote, M., Shatzen, E.M., Verral, S.C., and Wendel, A. (1998). Filgrastim restores interleukin-2 production in blood from patients with advanced human immunodeficiency virus infection. J Infect Dis 178, 686-692.
Hatada, E.N., Chen-Kiang, S., and Scheidereit, C. (2000). Interaction and functional interference of C/EBPbeta with octamer factors in immunoglobulin gene transcription. Eur J Immunol 30, 174-184.
Hoebe, K., Janssen, E., and Beutler, B. (2004). The interface between innate and adaptive immunity. Nat Immunol 5, 971-974.
Honda, K., and Taniguchi, T. (2006). IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 6, 644-658.
Hu, H.M., Baer, M., Williams, S.C., Johnson, P.F., and Schwartz, R.C. (1998). Redundancy of C/EBP alpha, -beta, and -delta in supporting the lipopolysaccharide-induced transcription of IL-6 and monocyte chemoattractant protein-1. J Immunol 160, 2334-2342.
Kang, S.M., Tsang, W., Doll, S., Scherle, P., Ko, H.S., Tran, A.C., Lenardo, M.J., and Staudt, L.M. (1992). Induction of the POU domain transcription factor Oct-2 during T-cell activation by cognate antigen. Mol Cell Biol 12, 3149-3154.
Kapiloff, M.S., Farkash, Y., Wegner, M., and Rosenfeld, M.G. (1991). Variable effects of phosphorylation of Pit-1 dictated by the DNA response elements. Science 253, 786-789.
Karin, M., and Ben-Neriah, Y. (2000). Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18, 621-663.
Kasibhatla, S., Tailor, P., Bonefoy-Berard, N., Mustelin, T., Altman, A., and Fotedar, A. (1999). Jun kinase phosphorylates and regulates the DNA binding activity of an octamer binding protein, T-cell factor beta1. Mol Cell Biol 19, 2021-2031.
Khwaja, A., Carver, J., Jones, H.M., Paterson, D., and Linch, D.C. (1993). Expression and dynamic modulation of the human granulocyte colony-stimulating factor receptor in immature and differentiated myeloid cells. Br J Haematol 85, 254-259.
Komine, M., Rao, L.S., Kaneko, T., Tomic-Canic, M., Tamaki, K., Freedberg, I.M., and Blumenberg, M. (2000). Inflammatory versus proliferative processes in epidermis. Tumor necrosis factor alpha induces K6b keratin synthesis through a transcriptional complex containing NFkappa B and C/EBPbeta. J Biol Chem 275, 32077-32088.
Kowenz-Leutz, E., Pless, O., Dittmar, G., Knoblich, M., and Leutz, A. (2010). Crosstalk between C/EBPbeta phosphorylation, arginine methylation, and SWI/SNF/Mediator implies an indexing transcription factor code. EMBO J 29, 1105-1115.
Lee, S.T., Chu, K., Jung, K.H., Ko, S.Y., Kim, E.H., Sinn, D.I., Lee, Y.S., Lo, E.H., Kim, M., and Roh, J.K. (2005). Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia. Brain Res 1058, 120-128.
Lieschke, G.J., Grail, D., Hodgson, G., Metcalf, D., Stanley, E., Cheers, C., Fowler, K.J., Basu, S., Zhan, Y.F., and Dunn, A.R. (1994). Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84, 1737-1746.
Lillycrop, K.A., Dawson, S.J., Estridge, J.K., Gerster, T., Matthias, P., and Latchman, D.S. (1994). Repression of a herpes simplex virus immediate-early promoter by the Oct-2 transcription factor is dependent on an inhibitory region at the N terminus of the protein. Mol Cell Biol 14, 7633-7642.
Lillycrop, K.A., and Latchman, D.S. (1992). Alternative splicing of the Oct-2 transcription factor RNA is differentially regulated in neuronal cells and B cells and results in protein isoforms with opposite effects on the activity of octamer/TAATGARAT-containing promoters. J Biol Chem 267, 24960-24965.
Liu, Y., Nonnemacher, M.R., and Wigdahl, B. (2009). CCAAT/enhancer-binding proteins and the pathogenesis of retrovirus infection. Future Microbiol 4, 299-321.
Liu, Y.W., Tseng, H.P., Chen, L.C., Chen, B.K., and Chang, W.C. (2003). Functional cooperation of simian virus 40 promoter factor 1 and CCAAT/enhancer-binding protein beta and delta in lipopolysaccharide-induced gene activation of IL-10 in mouse macrophages. J Immunol 171, 821-828.
Lomaga, M.A., Yeh, W.C., Sarosi, I., Duncan, G.S., Furlonger, C., Ho, A., Morony, S., Capparelli, C., Van, G., Kaufman, S., et al. (1999). TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 13, 1015-1024.
Lu, L., Walker, D., Graham, C.D., Waheed, A., Shadduck, R.K., and Broxmeyer, H.E. (1988). Enhancement of release from MHC class II antigen-positive monocytes of hematopoietic colony stimulating factors CSF-1 and G-CSF by recombinant human tumor necrosis factor-alpha: synergism with recombinant human interferon-gamma. Blood 72, 34-41.
Lu, S.C., Wu, H.W., Lin, Y.J., and Chang, S.F. (2009). The essential role of Oct-2 in LPS-induced expression of iNOS in RAW 264.7 macrophages and its regulation by trichostatin A. Am J Physiol Cell Physiol 296, C1133-1139.
Lukic, M.L., Arsenijevic, N., and Mitchison, N.A. (2009). Inflammation at the interface
of innate and acquired immunity. Mol Immunol 47, 1-2.
Mendez, J.A., Lopez-Bayghen, E., and Ortega, A. (2005). Glutamate activation of Oct-2 in cultured chick Bergmann glia cells: involvement of NFkappaB. J Neurosci Res 81, 21-30.
Miller, S.I., Ernst, R.K., and Bader, M.W. (2005). LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol 3, 36-46.
Mukerjee, R., Sawaya, B.E., Khalili, K., and Amini, S. (2007). Association of p65 and C/EBPbeta with HIV-1 LTR modulates transcription of the viral promoter. J Cell Biochem 100, 1210-1216.
Nakshatri, H., Nakshatri, P., and Currie, R.A. (1995). Interaction of Oct-1 with TFIIB. Implications for a novel response elicited through the proximal octamer site of the lipoprotein lipase promoter. J Biol Chem 270, 19613-19623.
Nelson, P.G. (1988). Early Behavioral Plasticity: Perinatal Development. Science 240, 1351-1352.
Nishizawa, M., Tsuchiya, M., Watanabe-Fukunaga, R., and Nagata, S. (1990). Multiple elements in the promoter of granulocyte colony-stimulating factor gene regulate its constitutive expression in human carcinoma cells. J Biol Chem 265, 5897-5902.
O'Hara, S.P., Splinter, P.L., Gajdos, G.B., Trussoni, C.E., Fernandez-Zapico, M.E., Chen, X.M., and LaRusso, N.F. (2010). NFkappaB p50-CCAAT/enhancer-binding protein beta (C/EBPbeta)-mediated transcriptional repression of microRNA let-7i following microbial infection. J Biol Chem 285, 216-225.
O'Neill, L.A., and Bowie, A.G. (2007). The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7, 353-364.
Oh, M., Dey, A., Gerard, R.D., Hill, J.A., and Rothermel, B.A. (2010). The CCAAT/enhancer binding protein beta (C/EBPbeta) cooperates with NFAT to control expression of the calcineurin regulatory protein RCAN1-4. J Biol Chem 285, 16623-16631.
Papin, S., Cazeneuve, C., Duquesnoy, P., Jeru, I., Sahali, D., and Amselem, S. (2003). The tumor necrosis factor alpha-dependent activation of the human mediterranean fever (MEFV) promoter is mediated by a synergistic interaction between C/EBP beta and NF kappaB p65. J Biol Chem 278, 48839-48847.
Pevzner, V., Kraft, R., Kostka, S., and Lipp, M. (2000). Phosphorylation of Oct-2 at sites located in the POU domain induces differential down-regulation of Oct-2 DNA-binding ability. Biochem J 347 Pt 1, 29-35.
Pham, T.H., Langmann, S., Schwarzfischer, L., El Chartouni, C., Lichtinger, M., Klug, M., Krause, S.W., and Rehli, M. (2007). CCAAT enhancer-binding protein beta regulates constitutive gene expression during late stages of monocyte to macrophage differentiation. J Biol Chem 282, 21924-21933.
Rhee, J.M., Gruber, C.A., Brodie, T.B., Trieu, M., and Turner, E.E. (1998). Highly cooperative homodimerization is a conserved property of neural POU proteins. J Biol Chem 273, 34196-34205.
Roberts, A.W. (2005). G-CSF: a key regulator of neutrophil production, but that's not all! Growth Factors 23, 33-41.
Roberts, A.W., Zaiss, M., Boyd, A.W., and Nicola, N.A. (1997). G-CSF-mobilized peripheral blood progenitor cells: in vitro growth pattern and hematopoietic growth factor receptor profile. Exp Hematol 25, 298-305.
Ross, S.E., Radomska, H.S., Wu, B., Zhang, P., Winnay, J.N., Bajnok, L., Wright, W.S., Schaufele, F., Tenen, D.G., and MacDougald, O.A. (2004). Phosphorylation of C/EBPalpha inhibits granulopoiesis. Mol Cell Biol 24, 675-686.
Rutella, S., Zavala, F., Danese, S., Kared, H., and Leone, G. (2005). Granulocyte colony-stimulating factor: a novel mediator of T cell tolerance. J Immunol 175, 7085-7091.
Sato, S., Sanjo, H., Takeda, K., Ninomiya-Tsuji, J., Yamamoto, M., Kawai, T., Matsumoto, K., Takeuchi, O., and Akira, S. (2005). Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 6, 1087-1095.
Savill, J.S., Wyllie, A.H., Henson, J.E., Walport, M.J., Henson, P.M., and Haslett, C. (1989). Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest 83, 865-875.
Scheicher, C., Mehlig, M., Dienes, H.P., and Reske, K. (1995). Uptake of microparticle-adsorbed protein antigen by bone marrow-derived dendritic cells results in up-regulation of interleukin-1 alpha and interleukin-12 p40/p35 and triggers prolonged, efficient antigen presentation. Eur J Immunol 25, 1566-1572.
Schneider-Merck, T., Pohnke, Y., Kempf, R., Christian, M., Brosens, J.J., and Gellersen, B. (2006). Physical interaction and mutual transrepression between CCAAT/enhancer-binding protein beta and the p53 tumor suppressor. J Biol Chem 281, 269-278.
Schreiner, S., Wimmer, P., Sirma, H., Everett, R.D., Blanchette, P., Groitl, P., and Dobner, T. (2010). Proteasome-dependent degradation of Daxx by the viral E1B-55K protein in human adenovirus-infected cells. J Virol.
Schwarzenberger, P., Huang, W., Ye, P., Oliver, P., Manuel, M., Zhang, Z., Bagby, G., Nelson, S., and Kolls, J.K. (2000). Requirement of endogenous stem cell factor and granulocyte-colony-stimulating factor for IL-17-mediated granulopoiesis. J Immunol 164, 4783-4789.
Scott, L.M., Civin, C.I., Rorth, P., and Friedman, A.D. (1992). A novel temporal expression pattern of three C/EBP family members in differentiating myelomonocytic cells. Blood 80, 1725-1735.
Segil, N., Roberts, S.B., and Heintz, N. (1991). Mitotic phosphorylation of the Oct-1 homeodomain and regulation of Oct-1 DNA binding activity. Science 254, 1814-1816.
Shannon, M.F., Coles, L.S., Fielke, R.K., Goodall, G.J., Lagnado, C.A., and Vadas, M.A. (1992). Three essential promoter elements mediate tumour necrosis factor and interleukin-1 activation of the granulocyte-colony stimulating factor gene. Growth Factors 7, 181-193.
Shaw, G., and Kamen, R. (1986). A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46, 659-667.
Staber, F.G., Burgess, A.W., Nicola, N.A., and Metcalf, D. (1984). Biological and biochemical properties of a serum factor that stimulates splenic hemopoiesis in mice. Exp Hematol 12, 107-113.
Sturm, R.A., Das, G., and Herr, W. (1988). The ubiquitous octamer-binding protein Oct-1 contains a POU domain with a homeo box subdomain. Genes Dev 2, 1582-1599.
Takiguchi, M. (1998). The C/EBP family of transcription factors in the liver and other organs. Int J Exp Pathol 79, 369-391.
Tengku-Muhammad, T.S., Hughes, T.R., Ranki, H., Cryer, A., and Ramji, D.P. (2000).
Differential regulation of macrophage CCAAT-enhancer binding protein isoforms by lipopolysaccharide and cytokines. Cytokine 12, 1430-1436. Uematsu, S., Matsumoto, M., Takeda, K., and Akira, S. (2002).
Lipopolysaccharide-dependent prostaglandin E(2) production is regulated by the glutathione-dependent prostaglandin E(2) synthase gene induced by the Toll-like receptor 4/MyD88/NF-IL6 pathway. J Immunol 168, 5811-5816.
van Leeuwen, H.C., Rensen, M., and van der Vliet, P.C. (1997). The Oct-1 POU homeodomain stabilizes the adenovirus preinitiation complex via a direct interaction with the priming protein and is displaced when the replication fork passes. J Biol Chem 272, 3398-3405.
von Aulock, S., Morath, S., Hareng, L., Knapp, S., van Kessel, K.P., van Strijp, J.A., and Hartung, T. (2003). Lipoteichoic acid from Staphylococcus aureus is a potent stimulus for neutrophil recruitment. Immunobiology 208, 413-422.
Wang, X.Z., Lawson, B., Brewer, J.W., Zinszner, H., Sanjay, A., Mi, L.J., Boorstein, R., Kreibich, G., Hendershot, L.M., and Ron, D. (1996). Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol Cell Biol 16, 4273-4280.
Wegner, M., Drolet, D.W., and Rosenfeld, M.G. (1993). POU-domain proteins: structure and function of developmental regulators. Curr Opin Cell Biol 5, 488-498.
Wethkamp, N., and Klempnauer, K.H. (2009). Daxx is a transcriptional repressor of CCAAT/enhancer-binding protein beta. J Biol Chem 284, 28783-28794.
Williams, S.C., Angerer, N.D., and Johnson, P.F. (1997). C/EBP proteins contain nuclear localization signals imbedded in their basic regions. Gene Expr 6, 371-385.
Williams, S.C., Baer, M., Dillner, A.J., and Johnson, P.F. (1995). CRP2 (C/EBP beta) contains a bipartite regulatory domain that controls transcriptional activation, DNA binding and cell specificity. EMBO J 14, 3170-3183.
Williams, S.C., Cantwell, C.A., and Johnson, P.F. (1991). A family of C/EBP-related proteins capable of forming covalently linked leucine zipper dimers in vitro. Genes Dev 5, 1553-1567.
Wright, S.D., Ramos, R.A., Tobias, P.S., Ulevitch, R.J., and Mathison, J.C. (1990). CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431-1433.
Yamanaka, R., Barlow, C., Lekstrom-Himes, J., Castilla, L.H., Liu, P.P., Eckhaus, M., Decker, T., Wynshaw-Boris, A., and Xanthopoulos, K.G. (1997). Impaired granulopoiesis, myelodysplasia, and early lethality in CCAAT/enhancer binding protein epsilon-deficient mice. Proc Natl Acad Sci U S A 94, 13187-13192.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45714-
dc.description.abstract顆粒性白血球群落性促進因子 (Granulocyte-colony simulating factor, G-CSF)為一具有促進嗜中性球及巨噬細胞分化增生能力的醣蛋白,可促使嗜中性球的前驅細胞自骨髓進入周邊血液循環,往發炎反應發生處聚集以吞噬病原體。當人體接受外來刺激例如格蘭氏陰性菌的脂多醣 (Lipopolysaccharide, LPS),或促發炎細胞激素如 TNF-α (Tumor necrosis factor)、IL-1β (Interleukin-1 beta) 等因子刺激時,會使血液中的 G-CSF 濃度增加,促使身體對感染產生免疫反應。近年來G-CSF 亦被發現具有更多樣的生理功能如:保護神經、促使骨髓幹細胞進入血液循環、降低移植體對抗宿主反應(GVHD) 等,皆具生理上的應用價值。本實驗室過去的研究發現在小鼠的巨噬細胞 Raw264.7 中,G-CSF 啟動子受到 LPS 刺激時,會被 Oct-2、C/EBPβ 等轉錄因子所結合。Oct-2 在神經細胞內及 B 淋巴球中是非常重要的轉錄因子,且其表現均需要 NF-κB 的參與,但Oct-2 在巨噬細胞內的表現和功能仍尚未明瞭,故我們想知道在LPS 誘導巨噬細胞表現 G-CSF時,Oct-2 與 C/EBPβ 是透過什麼機制誘導 G-CSF 表現的。此外,本實驗室過去發表的研究指出, LPS 可誘導巨噬細胞表現 Oct-2,故其在巨噬細胞內之功能可能與免疫反應發生有關,但其詳細機制仍需進一步探討。
我們利用 G-CSF Luciferase reporter assay 探討轉錄因子 Oct-2 與 C/EBPβ間的關係,發現同時表現 Oct-2 與 C/EBPβ 時可誘導 G-CSF promoter Luciferase的活性,且其具有協同作用。我們更進一步使用 GST-Oct-2 pull-down assay 與共免疫沉澱的方式分別探討體外與體內的機制,結果皆顯示 Oct-2 可與 C/EBPβ 產生交互作用。若將位於 C/EBPβ C 端的白胺酸拉鏈 (leucine zipper) 區域去除後,此交互作用則會消失,可推測白胺酸拉鏈對於 C/EBPβ 與 Oct-2 的交互作用是很重要的。為了探討這個交互作用的功能性影響,我們在進行 G-CSF Luciferasereporter assay 時使用白胺酸拉鏈區域被去除而無法與 Oct-2 產生交互作用的C/EBPβ 與完整的C/EBPβ 競爭,發現若加入愈多無法與 Oct-2 產生交互作用的C/EBPβ,則其誘導 G-CSF promoter Luciferase 活性的效果就愈低,故可推測C/EBPβ 與 Oct-2 的交互作可提高其促進轉錄的效果。此外,若進行 GSTpull-down 時加入 Oct-1 或是 Oct-2 進行競爭,加入的 Oct-1 或是 Oct-2 愈多,可被 pull-down 的 C/EBPβ 愈少,這可能代表了 Oct-2 與 Oct-1 在結構上具有一定程度的相似性。然而在小鼠巨噬細胞中 LPS 並不會誘導 Oct-1 的表現,但可顯著誘導 Oct-2 使其表現量增加。
另外有關 LPS 在小鼠巨噬細胞中可正向調控 Oct-2 表現的部份,我們根據Oct-2 promoter Luciferase reporter assay 的結果顯示,在 Oct-2 promoter 的-205/-82 之間具有對其基礎表現量重要的序列;在小鼠巨噬細胞中以 LPS 刺激後使 Oct-2 表現量增加,則與 -349/-205 間的序列有關。然而以 NF-κB 的抑制劑Bay11-7082 進行實驗,發現在 LPS 誘導 Oct-2 promoter Luciferase 活性、Oct-2mRNA 及 Oct-2 蛋白質的過程中,Bay11-7082 皆無顯著抑制效果,故可推測 LPS刺激小鼠巨噬細胞後使 Oct-2 表現量增加,其訊息傳遞路徑並不經過 NF-κB。
zh_TW
dc.description.abstractG-CSF (granulocyte-colony simulating factor) is a glycoprotein which stimulates the differentiation and proliferation of neutrophils and macrophages, it promotes
promyelocytes to migrate from bone marrow to peripheral blood, and gather at the inflammation area to clear out the pathogens. When the human body is stimulated by LPS (lipopolysaccharide) of Gram negative bacteria or pro-inflammatory cytokines such as TNF-α (tumor necrosis factor) and IL-1β (interlukin-1 beta), the G-CSF in blood increases dramatically to promote the immune response against infections. G-CSF has also been found to have multiple physiological roles, such as neural protection,
promotion of bone marrow stem cells to migrate to the peripheral blood and decrease the GVHD (graft-versus-host disease) reaction. According to the unpublished results in
our lab, we found that when murine macrophage Raw264.7 is stimulated by LPS, the G-CSF promoter is then bound by transcription factors such as Oct-2, C/EBPβ and p65. However, the functions of Oct-2 in LPS-induced G-CSF up-regulation in macrophages are still unclear. Thus in this study we investigated the role of Oct-2 and C/EBPβ in LPS
stimulated Raw264.7. In addition, one previous data showed that Oct-2 expression was induced by LPS in Raw264.7, therefore the mechanism of LPS-induced Oct-2 expression in macrophages is also studied.
First, the G-CSF Luciferase reporter assay was used to investigate the relationships between Oct-2, C/EBPβ and p50. We found that co-expression of Oct-2 and C/EBPβ induced G-CSF promoter Luciferase activity synergistically. We then used GST-Oct-2 pull-down assay and co-immunoprecipitation assay to investigate the protein-protein
interaction of Oct-2 and C/EBPβ, and we found that Oct-2 interacted with three forms of C/EBPβ including LAP*, LAP and LIP in either in vitro or in vivo conditions. To map the interacting domain of C/EBPβ with Oct-2, we deleted the leucine zipper domain of C/EBPβ and found that the C/EBPβ-D-ZIP did not interact with Oct-2 in the GST pull-down assay, the result suggests that the leucine zipper domain of C/EBPβ is indispensible to this interaction. To study the function of this interaction, the C/EBPβ-D-ZIP was used to compete the intact C/EBPβ in a G-CSF Luciferase reporter assay, and we found that the G-CSF promoter Luciferase activity decreased gradually with increasing amount of C/EBPβ. Although Oct-1 also compete the interaction between Oct-2 C/EBPβ, the expression of Oct-1 is not induced by LPS in Raw264.7, but the Oct-2 expression level can be induced significantly by LPS.
In the investigation of Oct-2 promoter by Luciferase reporter assay, we found that the sequence between -205/-82 of Oct-2 promoter is crucial for Oct-2 basal expression level, and the sequence between -349/-205 is important for LPS induced Oct-2 expression. We further used the NF-κB inhibitor Bay11-7082 to investigate the signaling pathway of LPS induced Oct-2 expression, and found that Bay11-7082 cannot inhibit the LPS induced Oct-2 promoter luciferase activity, Oct-2 mRNA and protein expressions. The results suggest that LPS-induced Oct-2 expression may through a
NF-κB independent pathway in macrophages.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:45:00Z (GMT). No. of bitstreams: 1
ntu-99-R97442022-1.pdf: 2035806 bytes, checksum: 4928f29073d4a4ca7e84a044b20222e4 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents中文摘要------------------------------- i
英文摘要------------------------------iii
第一章 緒論----------------------------------1
第一節 文獻回顧----------------------------2
第二節 研究動機與實驗目的--------------------------- 13
第二章 材料與方法------------------------- 14
第一節 實驗材料-------------------------- 15
第二節 細胞培養-------------------------- 16
第三節 質體的建構------------------------ 17
第四節 分析細胞内基因mRNA 表現量---------------------------- 23
第五節 以luciferase assay 分析基因啟動子活性--------------------------------- 25
第六節 以西方墨點法 (Western blot)進行細胞內蛋白質表現量之分析----- 27
第七節 以GST pull-down 分析細胞外 (in vitro) 蛋白質交互作用----------- 30
第八節 以共免疫沉澱(Co-immunoprecipitation)分析細胞內(in vivo)蛋白質交互作用----------------------------- 33
第三章 實驗結果----------------------------- 35
PART I
第一節 促發炎性細胞激素只可少量誘導 G-CSF 之表現,但無法誘導 Oct-2表現 ----------------------------- 36
第二節 Oct-2 可與 C/EBPβ 共同作用誘導 G-CSF 啟動子活性之表現---- 36
第三節 C/EBPβ 與 Oct-2 間存在蛋白質與蛋白質之交互作用--------------- 37
第四節 Oct-1 與 C/EBPβ 之關係及其在 LPS 誘導 G-CSF 表現時扮演之角色 -----------------------------37
第五節 C/EBPβ 蛋白質 C 端之白胺酸拉鏈結構對於其與 Oct-2 間的交互作用之影響------------------------ 38
第六節 C/EBPβ 與 Oct-2 間存在交互作用之功能性探討--------------------- 39
PART II
第一節 Oct-2 啟動子活性之分析--------------------- 40
第二節 LPS 刺激 Oct-2 表現並不透過 NF-κB 途徑-------------------------- 40
第四章 討論----------- 42
PART I
第一節 C/EBPβ 在 LPS 誘導 G-CSF 表現時之特異性角色探討----------- 43
第二節 小鼠巨噬細胞中 Oct-2 蛋白與 C/EBPβ 發生之交互作用探討---- 43
第三節 Oct-1 與 Oct-2 在 LPS 刺激小鼠巨噬細胞產生 G-CSF 時扮演的角色 ----------------------------- 45
第四節 Oct-2 與 C/EBPβ 共同表現對於誘導 G-CSF 啟動子表現所產生的協同性效果 (Synergistic effect) ----------------------------- 46
第五節 總結-------------------- 47
PART II
第一節 LPS 活化 Oct-2 表現時經由之訊息傳遞路徑------------------------- 48
第五章 圖表------------------------ 50
補充 ------------------------------ 66
參考文獻----------------------------- 70
dc.language.isozh-TW
dc.subject巨噬細胞zh_TW
dc.subjectG-CSFzh_TW
dc.subjectOct-2zh_TW
dc.subjectC/EBPβzh_TW
dc.subject蛋白質交互作用zh_TW
dc.subjectC/EBPβen
dc.subjectOct-2en
dc.subjectG-CSFen
dc.subjectMacrophageen
dc.subjectProtein-protein interactionen
dc.title探討受 LPS 刺激的小鼠巨噬細胞中 Oct-2 在 G-CSF 表現過程中所扮演的角色zh_TW
dc.titleRoles of Oct-2 in G-CSF Expression in LPS-induced Macrophagesen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張淑芬,李明學,盧志峰
dc.subject.keywordG-CSF,Oct-2,C/EBPβ,蛋白質交互作用,巨噬細胞,zh_TW
dc.subject.keywordG-CSF,Oct-2,C/EBPβ,Protein-protein interaction,Macrophage,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2010-08-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved