Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45710
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄧茂華(Mao-Hua Teng)
dc.contributor.authorYuan-Lung Hsiaoen
dc.contributor.author蕭淵隆zh_TW
dc.date.accessioned2021-06-15T04:44:57Z-
dc.date.available2012-08-16
dc.date.copyright2010-08-16
dc.date.issued2010
dc.date.submitted2010-08-06
dc.identifier.citation中文部份
黃忠良(1997)磁性流體理論應用。復漢出版社出版。共202 頁。
汪建民(1998)材料分析。中國材料科學學會發行。共743 頁。
林沛彥(1999)石墨包裹奈米晶粒材料與機械設計。台灣大學地質學系碩士論文,共72 頁。
張麗娟,林沛彥,J. J. Host,鄧茂華(1999)用電弧法製造的石墨包裹奈米晶粒新材料,化工冶金。
張麗娟(1999)石墨包裹奈米鎳晶粒的純化分離效果初步研究。台灣大學地質學系碩士論文,共140 頁。
丁南宏等51 人(2001)真空技術與應用。行政院國家科學委員會精密儀器發展中心出版。共680 頁。
鄭啟煇(2002)用電弧法在甲烷與氦氣混合氣體中合成石墨包裹奈米鎳晶粒的初步結果。台灣大學地質科學系碩士論文,共69 頁。
林春長(2002)石墨包裹奈米鈷晶粒之純化研究。台灣大學地質科學系碩士論文,共124 頁。
王明光,王敏昭(2003)實用儀器分析。國立編譯館發行。共692 頁。
陳永得(2006)以人造鑽石及噴氣式電弧法合成石墨包裹奈米鐵晶粒之初步結果。台灣大學地質科學系碩士論文,共88 頁。
李尚實(2006)不同粒徑大小的石墨包裹奈米鎳晶粒在NP-9 膠體系統中之分散研究。台灣大學地質科學系碩士論文,共95 頁。
蔡少葳 (2007) 石墨包裹奈米鎳晶粒的緻密化之初步研究。台灣大學地質科學系碩士論文,共75 頁。
呂睿晟, 羅仁傑, 鄧茂華 (2009) 核心金屬的磁性差異對石墨包裹金屬奈米顆粒排列構造之影響。第六屆海峽兩岸超微顆粒學術研討會。
羅仁傑 (2010) 石墨包裹奈米鐵晶粒的合成方法改進研究:石墨坩堝設計。台灣大學地質科學系碩士論文,共71 頁。
英文部份
[1] “Standard Test Method for Water Adsorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whitewater Products,” ASTM Designation C373-88. (1994) Book of American Society of Testing and Materials, Philadelphia, PA.
[2] Alejandro Esteban, Vicente Hernandez, Kevin Lunsford, (2000) “Exploit the Benefits of Methanol,” Bryan Research & Engineering, Inc, p. 1-21
[3] Bein, T. (2005) “Zeolitic Host-Guest Interactions and Building Blocks for the Self-Assembly of Complex Materials,”MRS Bulletin, Vol. 30, p. 713-720.
[4] Boncheva, M., and Whitesides, G., (2005) “Making Things by Self-Assembly,”MRS Bulletin, Vol. 30, p. 736-742.
[5] Cölfen, H., and Yu, S. H., (2005) “Biomimetic Mineralization/Synthesis of Mesoscale Order in Hybrid Inorganic-Organic Mrterials via Nanoparticle Self-Assembly,”MRS Bulletin, Vol. 30, p. 727-735.
[6] Dinsmore, A. D., Hsu, M. F., Nikolaides, M. G., Marquez, M., Bausch, A. R., and Weitz, D. A. (2002) “Colloidosomes: Selectively Permeable Capsules Composed of Colloidal Particles, ” Science, Vol. 298, p. 1006-1009.
[7] Dravid, V. P., Host, J. J., Teng, M. H., Elliott, B. R., Hwang, J. H., and Johnson, D. L., Mason, T. O., and Weertman, J. R. (1995) “Controlled-size nanocapsules, ” Nature, Vol. 374, p. 602.
[8] Elliott, B. R., Host, J. J., Dravid, V. P., Teng, M. H., and Hwang, J. H. (1997) “A descriptive model linking possible formation mechanisms for graphite-encapsulated nanocrystals to processing parameters,” J. Mater. Res., Vol. 12, No. 12, p. 3328-3333.
[9] Eugène, P., Sheng, L., and Jean-Baptiste, D. (1987) “Contribution to the Study of Basic Surface Groups on Carbon,” Carbon, Vol. 25, No. 2, p. 243-247.
[10] Fisher, R. A., J.Agric. Sci. 16, 492(1926)
[11] Guerret-Piecourt, C. , Lebouar, L. , Lolseau A., and Pascard H. (1994) “Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes,” Nature, Vol. 372, p. 761-765.
[12] Heidenreich, R. D., Hess, W. M., and Ban, L. L. (1968) “A Test Object and Criteria for High Resolution Electron Microscopy, ” J. Appl. Cryst., Vol. 1, p. 1-19.
[13] Host, J. J. (1997) “Arc synthesis and magnetic properties of graphite encapsulated nanocrystals,” Ph. D. dissertation, Northwestern Univ., Evanston, IL, USA.
[14] Host, J. J., Dravid, V. P., Teng, M. H., Elliott, B. R., Hwang, J. H., Mason. T. O., and Johnson, D. L. (1997) “Graphite encapsulated nanocrystals produced using a low carbon: metal ration,” J. Mater. Res., Vol. 12, p. 1268-1273.
[15] Host, J. J., Dravid, V. P., and Teng, M. H. (1998) “Systematic study of graphite encapsulated nickel nanocrystal synthesis with formation mechanism implication,” J. Mater. Res., Vol. 13, No. 9, p. 2547-2555.
[16] Huang, H. J., Yang, S. H., and Gu, G, (1998) “Preparation of Carbon-Coated Cobalt nanocrystal in a new Gas Blow Arc Reactor and Their Characterization,” J. Phys. Chem. B. Vol. 102, p. 3420-3424.
[17] Hwang, J. -H., Dravid, V. P., Teng, M. H., Host, J. J., Elliott, B. R., Johnson, D. L., and Mason, T. O. (1997) “Magnetic Properities of Graphitically Encapsulated Nickel Nanocrystals,” J. Mater. Res., Vol. 12, No. 4, p. 1076-1082.
[18] Iveson, S. M., Litster, J. D., Hapgood, K., & Ennis, B. J. (2001). “Nucleation, growth and breakage phenomena in agitated wet 74 granulation processes: A review.” Powder Technology, 117, 3–39.
[19] Jiang, M., Zhang, X. G., Liu, Y., Hao, G. M., and Lin, J. (2001) “Ferromagnetic Carbon-coated Iron and It’s Compounds nanocrystallite Synthesized at High Metal toCarbon Rate and High Yield by A Modified AC Arc Method,” Material Science and Engineering, B. 87, p. 66-69.
[20] Jiao, J., and Seraphin, S. (1996) “Preparation and properties of ferromagnetic carbon-coated Fe, Co, and Ni nanopaticles,” J. Appl. Phys., Vol. 80, No. 1, p. 103-108.
[21] Jiao, J., and Seraphin, S. (1998) “Carbon encapsulated nanopaticles of Ni, Co, Cu and Ti,” J. Appl. Phys., Vol. 83, No. 5, p. 2442-2448.
[22] Krätschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R. (1990) “Solid C60:a new form of carbon,” Nature, Vol. 347, p. 354-358.
[23] Lian, G. Thornton, C. Adams M. J., “A theoretical study of the liquid bridge forces between two rigid spherical bodies,” J. Colloid Interface Sci. 161Ž1993.138–147.
[24] Newitt, D. M., Conway-Jones, J. M., A contribution to the theory and practice of granulation, Trans. I. Chem. Eng. 36Ž1958.422–441.
[25] Pierson, H. O. (1993) “Handbook of carbon, graphite, diamond and fullerenes,” Noyes publications, p. 399.
[26] Rittner, M. N., and Abraham, T. (1997) “The Nanostructured Materials Industry,” Amer. Ceramic Soc. Bull., Vol. 76, p. 51-53.
[27] Princen, H. M., J. Colloid Interface Sci. 26,249 (1968)
[28] Rossetti, D., & Simons, S. J. R. (2003). “A microscale investigation of liquid bridges in the spherical agglomeration process,” Powder Technology, 130, 49–55.
[29] Rumpf, H., in: W.A. KnepperŽEd.., (1962). “The Strength of Granules 75 and Agglomerates, AIME, Agglomeration, Interscience, New York, pp. 379–418.
[30] Ruoff, R. S., Lorents, D. C., Chan, B., Malhotra, R., and Subramoney, S. (1993) “Single Crystal Metals Encapsulated in Carbon nanoparticles,” Science, Vol. 259, p. 346-348.
[31] Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, M., Sumiyama, K., Suzuki, K., Kasuya, A., and Nishina, Y. (1993a) “Carbon nanocapsules encaging metals and carbides,” J. Phys. Chem. Solids, Vol. 54, p. 1849.
[32] Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, M., Sumiyama, K., Suzuki, K., Kasuya, A., and Nishina, Y. (1993b) “Synthesis and electron-beam incision of carbon nanocapsules encaging YC2,” Chem. Phys. Lett., Vol. 209, No. 1-2 p. 72-76.
[33] Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, M., Yamamuro, S., Wakoh, K., Sumiyama, K., Suzuki, K., Kasuya, A., and Nishina, Y. (1993c) “Iron particles nesting in carbon cages grown by arc discharge,” Chem. Phys. Lett., Vol. 212, No. 3-4, p. 379-383.
[32] Seraphin, S., Zhou, D., Jiao, J., Withers, J. C., and Loutfy, R. (1993) “Selective encapsulation of the carbides of yttrium and titanium into carbon nanoclusters,” Appl. Phys. Lett., Vol. 63, No. 15, p.2073-2075.
[33] Seraphin, S., Zhou, D., Jiao, J., Minke, M., and Wang, S. (1994) “Catalytic role of nickle, palladium, and platinum in the formation of carbon nanoclusters,” Chem. Phys. Lett., Vol. 217, p. 191.
[34] Seraphin, S., Zhou, D., and Jiao, J. (1996) “Filling the carbon nanocages,” J. Appl. Phys., Vol. 80, No. 4, p. 2097-2104.
[35] Subramoney, S., Rouff, R. S., Lorents, D. C., and Malhotra, R. (1993) “Radial single-layer nanotubes,” Nature, Vol. 366, p. 637.
[36] Teng, M. H., Host, J. J., Hwang, J. H., Elliott, B. R., Weertman, J. R., Mason. T. O., Dravid, V. P., and Johnson, D. L. (1995) “Nanophase Ni paricles produced by a blown arc method,” J. Mater. Res., Vol. 10, No. 76 2, p. 233-236.
[37] Teng, M. H., Tsai, S. W., Hsiao, C. I., and Chen, Y. D. (2007) “Using diamond as a metastable phase carbon source to facilitate the synthesis of graphite encapsulated metal (GEM) nanoparticles by an arc-discharge method,” Journal of Alloys and Compounds, Vol. 434-435, p. 678-681.
[38] Tomita, M., Saito, Y., and Hayashi, T. (1993)“LaC2 Encapsulated in Graphite Nano-Particle,” Jpn. J. Appl. Phys., Vol. 32, Part 2, No. 2B, L 280-282.
[39] Tomita, S., Hikika, M., Fujii, M., Hayashi, S., Akamatsu, K., Deki, S., and Yasuda, H. (2000) “Formation of Co filled carbon nanocapsules by metal-template graphitization of diamond nanoparticles,” J. Appl. Phys., Vol. 88, No. 9, p. 5452-5457.
[40] Ward, D. M. (2005) “Directing the Assembly of Molecular Crystals,”MRS Bulletin, Vol. 30, p. 705-712.
[41] Washburn, E. W. (1921) “The Dynamics of Capillary Flow,” The Physical Review, Vol. 17, No. 3, p. 273-283.
[42] Wu, H., Thalladi, V. R., Whitesides, S., and Whitsides, G. M. (2002) “Using Hierarchical Self-Assembly To Form Three-Dimensional Lattices of Spheres,”J. Am. Chem. Soc., Vol. 124, p. 14495-14502.
[43] Xiangcheng, S. (2003) “Microstructure and Magnetic Properities of Carbon Coated Nanoparticles,” Journal of Dispersion Science and Technology, Vol. 24, No. 3&4, p. 557-567.
[44] Yudasaka, M., Kasuya, Y., Takahashi, K., Takizawa, M., Bandow, S., and Iijima, S. (2002) “Causes of different catalytic activities of metals in formation of single-wall carbon nanotubes,” Appl. Phys. A, Vol. 74, p. 377-385.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45710-
dc.description.abstract石墨包裹奈米鎳晶粒(Graphite Encapsulated Nickel Nanoparticles,簡稱Ni-GEM)是顆粒粒徑介於5-100 nm 的球狀複合材料,其內核為鎳金屬、外殼為石墨,也是目前本團隊所研究鐵、鈷、鎳三種磁性金屬中能以磁力方式自行排列呈高緻密塊體的GEM 材料,其緻密程度高達80%以上。奈米粉末的團聚問題嚴重,所以相當難使之緻密,但本研究利用熟知的毛細現象就使Ni-GEM 形成高緻密塊體,其主要驅動力就是來自粒子間彎曲液面的毛細作用力(capillary force),由毛細作用力驅動微粒聚集排列,將以往難以緻密的奈米顆粒形成高緻密度的塊體。
本研究包括兩部份,第一部份有別於以往利用磁力方式製備Ni-GEM塊體,改以離心機、石膏模型、壓坯成型法、自然沉澱法等方式製備Ni-GEM之緻密塊體,接著比較這些方法所製造出塊體的緻密度差異,並嘗試控制Ni-GEM 緻密塊體之外型,做出不同外型之Ni-GEM 塊體。第二部份為本研究之重點,針對在自然沉澱法中,甲醇不同的蒸散速率可得到不同緻密度之Ni-GEM 塊體,在這過程中對其Ni-GEM 顆粒間所受到的毛細力作討論,找出塊體緻密與毛細力之間的趨勢與關係。
由5 組不同溫度條件的實驗結果中發現,Ni-GEM 塊體的緻密度並非受到溫度直接的影響。從Lian 等人研究中所提出之液橋作用力模型發現,顆粒間之甲醇揮發過程中產生液橋力(liquid bridge force)。甲醇溫度越高,顆粒間產生之液橋力越小,但在高溫下液橋力較小所產生的Ni-GEM塊體相對密度卻都較低溫液橋力較大高,因此溫度顯然並非Ni-GEM 緻密之主要因素而應為蒸散速率。由多組實驗結果後證實利用自然沉澱法,單改變甲醇蒸散速率即可以製備出相對密度高達88-90%之塊體。此外由理論的推算可以發現顆粒大小58 nm 間的吸引力與磁鐵對於顆粒的吸引力大約分別是10-14 與10-12(N),比液橋作用力10-9-10-10(N)還小。因此本研究推論在高揮發速率的環境下由於顆粒間的液橋快速的減少,顆粒與顆粒靠近的相對速度也會提升,但由於液橋消失的快,所以所形成之塊體也趨於破碎,這個現象在溫度越接近甲醇沸點越是明顯。在低溫(0℃)的環境下由於甲醇揮發速率慢,顆粒間受到液橋力的時間也相對增長且低溫下液橋力較大,因此這兩種溫度條件下所形成之Ni-GEM 塊體密度都較室溫(20℃)條件下來的高,因此不管是利用改變溫度的方式或者是改變環境氣壓的方式,只要透過改變甲醇蒸散速率就可以使石墨包裹奈米鎳金屬達到高緻密。
zh_TW
dc.description.abstractGraphite Encapsulated Metal (GEM) nanoparticles is a spherical composite material with a core(metal)/shell(carbon) structure and its diameter is in a range of 5 to 100 nm. Because the outer shell protects the inner metal nanoparticles, the materials remain stable in strong acid as well as at high temperature in an oxygen-free environment. It is widely used in environmental implement, scientific research, biomedical applications, and military. GEM can be packed to form high density bulk by the magnet force and the problem of aggregation can be solved in our previous lab studies. This study not only utilizes other forces or set up several parameters to form high density bulk, but also investigates the mechanism of forming high density bulk of GEM.
These experiments are designed as following: (1) centrifugal force, (2) gypsum casting, and (3) deposition method to form high density bulk. The results of centrifugal force show that high density, large volume bulk of GEM can be formed but the results of gypsum casting cannot. The results of deposition method obviously show that the density of GEM is increasing with increasing temperature, whether the magnet force was conducted or not. In fact, the liquid bridge force can explain the different evaporation rates will affect Ni-GEM bulk density when changing temperatures. Besides, this study also provides the theoretical calculation of the effects among Van der Waals force, the magnetic force, and the liquid bridge force. The results suggest that the liquid bridge force predominates of dense GEM bulk forming in the process. The liquid bridge force is a hundred times larger than the magnetic force and 10 thousand times larger than Van der Waals force. In summary, this study not only provides experimental results and theoretical calculations to prove that the dominated force is the liquid bridge force, but also provide another method to form the high density bulk of Ni-GEM.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:44:57Z (GMT). No. of bitstreams: 1
ntu-99-R95224214-1.pdf: 34077746 bytes, checksum: 29cc131c55b3bb19638e0f3be4223d74 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents致謝................................................. i
中文摘要....................................................ii
Abstract..................................................iv
目錄........................................................vi
圖目錄......................................................ix
表目錄......................................................xi
第一章 前言 ................................................ 1
1-1 背景................................................1
1-2 研究動機............................................2
1-3 本文內容.......................................... 2
第二章 文獻回顧..............................................4
2-1 奈米材料............................................ 4
2-1.1 奈米材料的特性 ................................ 4
2-1.2 奈米材料製造方法................................5
2-1.3 電弧加熱蒸發法 ................................ 6
2-2 石墨包裹奈米鎳晶粒.................................. 8
2-2.1 石墨包裹奈米晶粒形成機制 ...................... 9
2-2.2 製程方式演進 ..................................11
2-3 石墨包裹奈米鎳晶粒自組裝 .......................... 13
2-4 石墨與碳的親油性 .................................. 14
2-5 顆粒間的液橋現象 .................................. 14
2-5.1 液橋力........................................ 15
2-6 石墨包裹奈米鎳顆粒的密度............................17
第三章 實驗方法與步驟...................................... 18
3-1 實驗裝置............................................18
3-1.1 真空艙電弧系統與水冷系統........................18
3-2 實驗流程............................................ 21
3-2.1 鎢-碳電弧法製備石墨包裹奈米金屬晶粒程序 ........21
3-2.2 電弧實驗控制變因 .............................. 23
3-2.3 後續處理流程 .................................. 24
3-2.4 石墨包裹奈米金屬晶粒純化磁選步驟 .............. 25
3-2.5 利用不同溫度蒸散GEM 之甲醇水溶液 .............. 26
3-2.6 利用離心法製作GEM 塊體之製成方式.............. 26
3-2.7 密度量測 ...................................... 27
3-3 分析儀器 ............................................28
第四章 實驗結果與討論........................................33
4-1 石墨包裹奈米鎳晶粒描述.............................. 33
4-1.1 石墨包裹奈米鎳晶粒初產物分析 .................. 33
4-2 其他GEM 緻密化製程方法............................ 38
4-2.1 離心法 ..........................................38
4-2.2 石膏鑄模法 .................................... 39
4-2.3 壓坯成型法 .................................... 40
4-2.4 自然沉澱法......................................40
4-3 不同溫度條件下利用自然沉澱法緻密GEM 之結果........ 41
4-4 GEM 在不同溫度下以外加磁場之緻密結果 .............. 54
4-5 利用不同蒸散速率對石墨包裹奈米鈷晶粒之緻密結果 ......62
4-6 GEM在緻密過程中甲醇揮發所產生的液橋作用力的探討......63
4-6.1 毛細作用 ...................................... 63
4-6.2 液橋作用力在不同溫度下預測之變化情形........64
4-7 主導緻密之機制 ......................................65
4-8 GEM緻密塊體之形成機制修正.......................... 67
第五章 結論與建議......................................69
參考文獻............................................. 71
dc.language.isozh-TW
dc.subject蒸散速率zh_TW
dc.subject石墨包裹奈米鎳晶粒zh_TW
dc.subject液橋作用力zh_TW
dc.subjectliquid bridge forceen
dc.subjectgraphite encapsulated nickel nanoparticlesen
dc.subjectevaporation rateen
dc.subjecttemperatureen
dc.subjectmethanolen
dc.title甲醇之蒸散速率效應對石墨包裹奈米鎳晶粒緻密化之研究zh_TW
dc.titleStudy of the Effect of Methanol Evaporation Rate on Packing of Graphite Encapsulated Nickel Nanoparticlesen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧茂英,黃武良,王玉瑞
dc.subject.keyword石墨包裹奈米鎳晶粒,液橋作用力,蒸散速率,zh_TW
dc.subject.keywordgraphite encapsulated nickel nanoparticles,liquid bridge force,methanol,temperature,evaporation rate,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2010-08-08
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
33.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved