Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45678
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃天偉
dc.contributor.authorWei-Hung Chouen
dc.contributor.author周韋宏zh_TW
dc.date.accessioned2021-06-15T04:44:33Z-
dc.date.available2020-08-08
dc.date.copyright2010-08-17
dc.date.issued2010
dc.date.submitted2010-08-09
dc.identifier.citation[1] J. Wells, “Faster than fiber: The future of multi-Gb/s wireless,” IEEE Microwave Magazine, vol.10, issue 3, pp. 104-112, May 2009.
[2] https://mentor.ieee.org/802.15/file/07/15-07-0760-03-003c-tensorcom-phy-presentation.ppt
[3] C. H. Doan, S. Emami, A. M. Nikneiad, R. W. Brodersen, “Millimeter-wave CMOS design,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144-155, Jan. 2005.
[4] J.M. Gilbert et al., “A 4-Gbps Uncompressed Wireless HD A/V Transceiver Chipset,” IEEE Micro, vol.28, issue 02, pp. 56-64, April 2008.
[5] B. Floyd, S. Reynolds, U. Pfeiffer, T. Beukema, J. Grzyb, and C. Haymes, “A Silicon 60GHz Receiver and Transmitter Chipset for Broadband Communications,” ISSCC Dig. Tech Papers, pp. 649-658, Feb. 2006.
[6] M. Tanomura1, Y. Hamada, S. Kishimoto, M. Ito, N. Orihashi, and K. Maruhashi, “TX and RX Front-Ends for 60GHz Band in 90nm Standard Bulk CMOS,” ISSCC Dig. Tech Papers, pp. 558-635, Feb. 2008.
[7] S. Sarkar, P. Sen, B. Perumana, D. Yeh, D. Dawn, S. Pinel, and J. Laskar, “60 GHz Single-Chip 90nm CMOS Radio with Integrated Signal Processor,” in IEEE MTT-s Int. Microw. Symp. Dig., Sep. 2008, pp. 1167-1170.
[8] C. Marcu, D. Chowdhury, C. Thakkar, L. K. Kong, M. Tabesh, J. D. Park, Y. Wang, B. Afshar, A. Gupta, A. Arbabian, S. Gambini, R. Zamani, A. M. Niknejad, and E. Alon, “A 90nm CMOS Low-Power 60GHz Transceiver with Integrated Baseband Circuitry,” ISSCC Dig. Tech Papers, pp. 314-315, Feb. 2009.
[9] B. Bosco, S. Franson, R. Emrick, S. Rockwell, and J. Holmes, “A 60 GHz Transceiver with Multi-Gigabit Data Rate Capability,” in IEEE Radio and Wireless Conference, Sep. 2004, pp. 135-138.
[10] K. Ohata, K. Maruhashi, M. Ito, S. Kishimoto, K. Ikuina, T. Hashiguchi, N. Takahashi, and S. Iwanaga, “Wireless 1.25Gb/s Transceiver Module at 60GHz-Band,” ISSCC Dig. Tech Papers, pp. 236-239, Feb. 2002.
[11] K. Maruhashi, S. Kishimoto, M. Ito, K. Ohata, Y. Hamada, T. Morimoto, and H. Shimawaki, “Wireless Uncompressed-HDTV-Signal Transmission System Utilizing Compact 60-GHz-band Transmitter and Receiver,” in IEEE MTT-s Int. Microw. Symp. Dig., Jun. 2005, pp. 1867-1870.
[12] J. Lee, Y. Huang, Y. Chen, H. Lu, and C. Chang, “A Low-Power Fully Integrated 60GHz Transceiver System with OOK Modulation and On-Board Antenna Assembly,” ISSCC Dig. Tech Papers, pp. 316-317, Feb. 2009.
[13] M. K. Raja, Y. Xu, “A 52 pJ/bit OOK Transmitter with adaptable data rate,” in Asian Solid-State Circuits Conference (ASSCC), pp. 341-344, Nov. 2008.
[14] A. Oncu, K. Takano and M. Fujishima, “8Gbps CMOS ASK Modulator for 60GHz Wireless Communication,” in Asian Solid-State Circuits Conference (ASSCC), pp. 125-128, Nov. 2008.
[15] J. Lee, D. Jung, K. Eun, S. Cho, and C. Park, “A 60GHz Low Power CMOS Demodulator for Multi-Gigabit Wireless Receiver Systems,” in Proceedings of APMC, Nov. 2007, pp. 1-4.
[16] C. Wang, H. Chang, P. Wu, K. Lin, T. Huang, H. Wang, C. Chen, “A 60GHz Low-Power Six-Port Transceiver for Gigabit Software-Defined Transceiver Applications,” ISSCC Dig. Tech Papers, pp. 192-196, Feb. 2007.
[17] V. Aparin, G. Brown, and L. E. Larson, “Linearization of CMOS LNAs via optimum gate biasing,” in IEEE Int. Circuits Syst. Symp., Vancouver, BC, Canada, May 2004, vol. 4, pp. 748–751.
[18] S. Luo and H. C. Luong, “A Linearization Technique for RF Receiver Front-End Using Second-Order-Intermodulation Injection,” IEEE J. Solid-State Circuits, vol. 43, pp. 2404-2412, Nov. 2008.
[19] V. Aparin and L. E. Larson, “Modified derivative superposition method for linearizing FET low-noise amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 571–581, Feb. 2005.
[20] S. Ganesan, E. S. Sinencio, and J. S. Martinez, “A Highly Linear Low-Noise Amplifier” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4079–4085, Dec. 2006.
[21] Y. Jen, J. Tsai, T. Huang, and H. Wang, “Design and Analysis of a 55–71-GHz Compact and Broadband Distributed Active Transformer Power Amplifier in 90-nm CMOS Process,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1637–1646, Jul. 2009.
[22] T. Luo, S. Bai, Y. Chen, H. Chen, and D. Heo, “A 1-V CMOS VCO for 60-GHz applications,” in Proceedings of APMC, Dec. 2005, pp. 1-4.
[23] I. Aoki, S. D. Kee, D. B. Rutledge and A. Hajimiri, “Fully integrated CMOS power amplifier design using the distributed active-transformer architecture,” IEEE J. Solid-State Circuits, vol. 37, no.3, pp.371-383, Mar. 2002.
[24] H. Chang, M. Lei, C. Lin, Y. Cho, Z. Tsai, and H. Wang “A 46-GHz Direct Wide Modulation Bandwidth ASK Modulator in 0.13-μm CMOS Technology,” IEEE Micro. Wireless Compon. Lett., vol. 17, pp. 691-693, Sep. 2007.
[25] H. Mizutani and Y. Takayama, “DC-110-GHz MMIC traveling-wave switch,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 5, pp. 840–845, Jul. 2000.
[26] “Schottky barrier diode video detector,” Agilent Technol., Santa Clara, CA, Applicat. Note 923, 1999.
[27] Q. Yin, W. R. Eisenstadt, R. M. Fox, and T. Zhang, “A translinear RMS detector for embedded test of RF ICs,” IEEE Trans. Instrum. Meas., vol. 54, no. 10, pp. 1708–1714, Oct. 2005.
[28] Y. Zhou and Michael Y. Chia, “A Low-Power Ultra-Wideband CMOS True RMS Power Detector,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 5, pp. 1052–1058, May. 2008.
[29] S. Galal and B. Razavi, “10-Gb/s Limiting Amplifier and Laser/Modulator Driver in 0.18-_m CMOS Technology” IEEE J. Solid-State Circuits, vol. 38, no.12, pp. 2138-2146, Dec. 2003.
[30] H. Huang, J. Chien, and L. Lu, “A 10-Gb/s Inductorless CMOS Limiting Amplifier With Third-Order Interleaving Active Feedback” IEEE J. Solid-State Circuits, vol. 42, no.5, pp. 1111-1120, May. 2007.
[31] A. Tomkins, R. A. Aroca, T. Yamamoto, S. T. Nicolson, Y. Doi, and S. P. Voinigescu, “A Zero-IF 60 GHz 65 nm CMOS Transceiver With Direct BPSK Modulation Demonstrating up to 6 Gb/s Data Rates Over a 2 m Wireless Link,” IEEE J. Solid-State Circuits, vol. 44, no.8, pp.2085-2099, Aug. 2009.
[32] G. Gonzalez, Microwave Transistor Amplifiers. Upper Saddle River, NJ: Prentice Hall, 1997.
[33] E. Cohen, S. Ravid, and D. Ritter, “An ultra low power LNA with 15dB gain and 4.4dB NF in 90nm CMOS process for 60 GHz phase array radio,” Proc. RFIC IEEE Symp., pp. 61-64, June 2008.
[34] W. Lin, J. Tsai, Y. Jen, T. Huang, and H. Wang, “A 0.7-V 60-GHz Low-Power LNA with Forward Body Bias Technique in 90 nm CMOS Process.” In EUMC, pp.393-396, 2009.
[35] V. Aparin and L. E. Larson, “Linearization of monolithic LNAs using low- frequency low-impedance input termination,” in Eur. Solid-State Circuits Conf., Lisbon, Portugal, Sep. 16–18, 2003, pp. 137–140.
[36] T. Kim and B. Kim, “Post-Linearization of Cascode CMOS Low Noise Amplifier Using Folded PMOS IMD Sinker” IEEE Micro. Wireless Compon. Lett., vol. 16, pp. 182-184, Apr. 2006.
[37] N. Kim, V. Aparin, K. Barnett, and C. Persico, “A Cellular-Band CDMA 0.25-μm CMOS LNA Linearized Using Active Post-Distortion” IEEE J. Solid-State Circuit, vol. 41, no.7, pp. 1530-1534, Jul. 2006.
[38] S. Mass, Nonlinear Microwave Circuits. Norwood, MA: Artech House, 1988.
[39] C.H. Doan, S. Emami, A.M. Niknejad, R.W. Brodersen, “Millimeter-Wave CMOS Design”, IEEE J. Solid-State Circuit, vol. 40, no. 1, Jan. 2005.
[40] T. Yao, et al., “Algorithmic Design of CMOS LNAs and Pas for 60-GHz Radio”, IEEE J. Solid-State Circuit, vol. 42, no. 5, pp. 1044-1057, May 2007.
[41] C. Weyers, P. Mayr, J. W. Kunze, and U. Langmann, “A 22.3 dB voltage gain 6.1 dB NF 60 GHz LNA in 65 nm CMOS with differential Output,” ISSCC Dig. Tech. Papers, pp. 192–193, Feb. 2008.
[42] B. Huang, K. Lin, H. Wang, “Millimeter-Wave Low Power and Miniature CMOS
Multicascode Low-Noise Amplifiers with Noise Reduction Topology” IEEE Trans. Microw. Theory Tech., vol. 56, no. 5, pp. 1052–1058, May. 2008.
[43] B. Razavi, RF and Microelectronics. Upper Saddle River, NJ: Prentice Hall, 1998.
[44] Q. Gu, RF System Design of Transceiver for Wireless Communications. Spring Street, NY: Springer Science, 2005.
[45] 蔡政翰 “毫米波發射器線性化及十億位元無線通信系統 Millimeter-wave Transmitter Linearization and Gigabit Wireless Communication Systems” 國立臺灣大學電機資訊學院電信工程學研究所博士論文, 中華民國 96 年 1 月, 2007.
[46] 任勇年 “互補式金氧半導體功率放大器線性器及分佈式主動轉換器之研製 Design and Analysis of CMOS Power Amplifier Linearizer and Distributed Active Transformer” 國立臺灣大學電機資訊學院電信工程學研究所博士論文, 中華民國 97 年 8 月, 2008.
[47] D. M. Pozar, Microwave and RF Design of Wireless Systems. John Wiley & Sons Inc, 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45678-
dc.description.abstract本論文研究方向著重於應用60-GHz之振幅偏移調變(ASK)收發機設計與低雜訊放大器之線性化技術。
隨著無線通訊技術的發展,較低頻率之頻段使用已經接近飽和,迫使毫米波頻段之設計與應用成為備受關注的研究課題。此外,在傳輸資料量日增月異的情況下,如何實現寬頻的收發機設計以達到高速的資料傳輸也成了重要題目。IEEE 802.15.3C之規範定義了7 GHz的頻寬用來做高速的短距離傳輸使用,使得例如高畫質影片的傳送應用在幾秒內就可以完成。如果想要將此收發機實現在可移動式設備上,功耗與成本絕對是重要考量。因此論文的第一部份,以低功耗及低成本之調變技術為目標,利用互補式金氧半導體(CMOS) 0.13微米製程設計了使用ASK調變技術的發射器與收發機。發射器由一個ASK調變器與使用分佈式主動轉換器之功率放大器組成。在消耗561毫瓦的功耗下,OP1dB為10.8dBm,可以達到超過2Gbps的傳輸速度。收發機則是由ASK調變器、ASK解調器、切換器、中功率放大器所組成,僅消耗154.8毫瓦,OP1dB為-4.7dBm,預期最大傳輸及接收速率可以達到3Gbps。
第二部份探討當使用高頻譜使用效率的調變技術時,元件的非線性問題導致交互調變影響接收訊號解調的正確度,而低雜訊放大器的三階非線性項在低輸入功率時是致使問題發生的主因。因此我們探討與比較目前線性化的技術,並使用修正的導數疊加(Derivative Superposition)方法應用於90nm CMOS製程的低功耗60-GHz低雜訊放大器,藉由並聯一個線性器抵銷三階非線性項提高線性度。放大器在10.8毫瓦的消耗功率下,最高增益11.5dB。而雜訊指數在60 GHz時是5.3 dB,在60.8 GHz到66 GHz的頻率下從4.4 dB至6.3 dB。低輸入功率時可以改善三階項8dB,使IIP3從原來的-5dBm提高至0 dBm。
zh_TW
dc.description.abstractIn this thesis, a 60-GHz ASK Transceiver and a low noise amplifier with built-in linearizer are developed. As the demands for wireless communication technology are growing rapidly in the recent years, the usage of lower frequency band has gradually saturated, and it forces the research of millimeter-wave circuit design to become a hot topic. Furthermore, the transmission data rate has also increased which implies the task of designing the wideband transceiver would be essential. The standard of IEEE 802.15.3c has defined 7-GHz bandwidth to fulfill the high-speed transmission of wireless personal network, which is capable to transmit the high definition video file wirelessly in the few seconds. To realize the transceiver on the mobile devices, power consumption and manufacturing cost are definitely the major concerns. Therefore, in the first part of thesis, we propose the transceiver using the ASK modulation technique which tally with the foregoing purpose of low power consumption and manufacturing cost. They are fabricated by 0.13 μm CMOS technology. The transmitter includes a distributed active transformer (DAT) power amplifier and an ASK modulator. The transmitter OP1dB is 10.8 dBm for 561 mW dc power consumption, and it is expected to transmit the data over 2 Gbps. The transceiver is composed of a ASK modulator, a ASK demodulator, a medium power amplifier, and a traveling-wave type switch. The OP1dB is measured to be -4.7 dBm under mere 154.8 mW power consumption, and the data rate around 3 Gbps is achievable through modulation and demodulation measurement.
In the second part, we discuss the nonlinearity problem which may lead to higher bit-error rate (BER) especially with high spectral-efficiency modulation technique. After comparing the existing linearization techniques, we propose a 90nm CMOS technology 60-GHz low power low noise amplifier with modified derivative superposition technique. The linearizer is placed in parallel to the gain stage and has been demonstrated 8-dB IMD3 suppression and 5-dB IIP3 improvement from original -5 dBm to 0 dBm. The peak gain is 11.5 dB and the dc power consumption is 10.8 mW. Besides, noise figure (NF) is 5.3 dB at 60 GHz and ranges from 4.4 dB to 6.3 dB in the interested band.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:44:33Z (GMT). No. of bitstreams: 1
ntu-99-R97942015-1.pdf: 19054072 bytes, checksum: aadad7ad983710a4b045174f2913ce54 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xiii
Chapter1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 3
1.3 Contribution 5
1.4 Thesis Organization 6
Chapter2 Wireless Communication Systems 7
2.1 Digital Communication Systems [43] [44] 7
2.1.1 Amplitude Shift Keying (ASK) 7
2.1.2 Binary Phase Shift Keying (BPSK) 8
2.1.3 Quadrature Phase Shift Keying (QPSK) 9
2.1.4 Frequency Shift Keying (FSK) 10
2.1.5 Gaussian-Filtered Minimum Shift Keying (GMSK) 10
2.1.6 Quadrature Amplitude Modulation (QAM) 11
2.1.7 Comparison of modulation techniques 12
2.2 Linearity Consideration [43] [44] 13
2.2.1 Nonlinear Distortion Characteristic 14
2.2.2 Harmonic 14
2.2.3 AM-AM Characteristic 15
2.2.4 AM-PM Characteristic 16
2.2.5 Intermodulation (IM) and Third-Order Intercept Point (IP3) 18
Chapter3 A 60-GHz ASK Transceiver Design 20
3.1 Introduction 20
3.2 MMIC Process 21
3.3 System Link Budget 22
3.3.1 Transmitter Architecture and Link Budget 22
3.3.2 Transceiver Architecture and Link Budget 23
3.4 Transmitter Blocks 26
3.4.1 Power Amplifier with Distributed Active Transformer (DAT) 27
3.4.2 ASK Modulator 33
3.4.3 Transmitter Performance 42
3.5 Transceiver Blocks 44
3.5.1 Amplifier 44
3.5.2 ASK Demodulator 47
3.5.3 Switch 54
3.5.4 Transceiver Performance 56
3.6 Measurement Results 60
3.6.1 Transmitter Measurement Result 60
3.6.2 Transceiver Measurement Result 64
3.7 Discussion and Summary 70
Chapter4 Linearization of 60-GHz Low Noise Amplifier 72
4.1 Introduction 72
4.2 MMIC Process 74
4.3 Types of Linearization Techniques for Low Noise Amplifier 74
4.3.1 Biasing at Zero Crossing Point of Third Order Nonlinearity 75
4.3.2 Derivative Superposition (DS) and Its Modified Form 76
4.3.3 IM2 Injection 80
4.3.4 Post Distortion 81
4.3.5 Problems of Linearization at 60 GHz 83
4.4 60-GHz LNA using Modified DS Technique 83
4.4.1 Linearizer Operation Principle 84
4.4.2 Bias and Device Size Selection 86
4.4.3 Overall LNA with Built-in modified DS Linearizer Design 88
4.4.4 Simulation Results 90
4.5 Measurement Results 94
4.6 Discussion and Summary 100
Chapter5 Conclusion 102
REFERENCE 104
dc.language.isoen
dc.subject60-GHzzh_TW
dc.subject線性化zh_TW
dc.subject低雜訊放大器zh_TW
dc.subject收發機zh_TW
dc.subject振幅偏移調變zh_TW
dc.subject60-GHzen
dc.subjectAmplitude Shift Keying (ASK)en
dc.subjectTransceiveren
dc.subjectLow Noise Amplifieren
dc.subjectLinearizationen
dc.title60-GHz低功耗振幅偏移調變收發機設計與低雜訊放大器線性化技術zh_TW
dc.title60-GHz Low Power ASK Transceiver Design and Linearization of Low Noise Amplifieren
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡政翰,張鴻埜,林坤佑
dc.subject.keyword60-GHz,振幅偏移調變,收發機,低雜訊放大器,線性化,zh_TW
dc.subject.keyword60-GHz,Amplitude Shift Keying (ASK),Transceiver,Low Noise Amplifier,Linearization,en
dc.relation.page111
dc.rights.note有償授權
dc.date.accepted2010-08-09
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
18.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved