Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45667
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賈儀平(Yee-Ping Chia)
dc.contributor.authorPei-Ling Wangen
dc.contributor.author王珮玲zh_TW
dc.date.accessioned2021-06-15T04:44:26Z-
dc.date.available2012-08-10
dc.date.copyright2010-08-10
dc.date.issued2010
dc.date.submitted2010-08-09
dc.identifier.citationAkita, F. and N. Matsumoto (2004) Hydrological responses induced by the Tokachi-oki earthquake in 2003 at hot spring wells in Hokkaido, Japan. Geophys. Res. Lett., 31, L16603, doi:10.1029 /2004GL020433.
Aki, K. and P. G. Richards (1980) Quantitative Seismology: Theory and Method. W. H. Freeman and Company, San Francisco, Calif.
Berryman, J. G. and H. F. Wang (2000) Elastic wave propagation and attenuation in a double-porosity dual-permeability medium. Int. J. Rock Mech. Min. Sci., 37, 67–78.
Biot, M. A. (1941) General theory of three-dimensional consolidation. J. Appl. Phys., 12, 155–164.
Biot, M. A. (1956a) Theory of propagation of elastic waves in fluid-saturated porous solid. I: Low-frequency range. J. Acoust. Soc. Am., 28, 168–178.
Biot, M. A. (1956b) Theory of propagation of elastic waves in fluid-saturated porous solid. II: Higher frequency range. J. Acoust. Soc. Am., 28, 179–191.
Blanchard, F. B. and P. Byerly (1935) A study of a well gauge as a seismograph. Bull Seismol. Soc. Am., 25, 313–321.
Brace, W. F., J. Paulding, and C. Scholz (1966) Dilatancy in the fracture of crystalline rocks. J. Geophys. Res., 71, 3939–3953.
Brodsky, E. E., E. A. Roeloffs, D. Woodcock, I. Gall, and M. Manga (2003) A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J. Geophys. Res., 108, 2390, doi: 10.1029/2002JB002321.
Chan, Y. C., C. Y. Lu, J. C. Lee (2000) Orogen-parallel shearing in on-going mountain building: a case study form the southeastern Central Range of Taiwan. Eos. Trans. AGU, Fall Meet. Suppl., Abstract 81 (48).
Chang, C. P., J. Angelier, C. Y. Lu (2007) Polyphase deformation in a newly emerged accretionary prism: Folding, faulting and rotation in the southern Taiwan mountain range. Tectonophysics, 466, 395-408. doi:10.1016/j.tecto.2007.11.002.
Chen, J. S. and C. Y. Wang (2009) Rising springs along the Silk Road. Geology, 37, 243–246.
Chia, Y. P., Y. S. Wang, C. C. Huang, J. S. Chen, and H. P. Wu (2002) Coseismic changes of groundwater level in response to the 1999 Chi-Chi earthquake. West. Pac. Earth Sci., 2, 261–72.
Chia, Y., J. J. Chiu, Y. H. Jiang, T. P. Lee, Y. M. Wu, and M. J. Horng (2008) Implications of coseismic groundwater level changes observed at multiple-well monitoring stations. Geophys. J. Int., 172, 293–301.
Chiang, H. C. (1976) Seismic study in the Ilan Plain. Mining Tech., 14, 215-221. (in Chi nese)
Cooper, H. H., J. D. Bredehoeft, I. S. Papadopulos, and R. R. Bennett (1965) The response of well-aquifer systems to seismic waves. J. Geophys. Res., 70, 3915–3926.
Davis, E. E., K. Becker, K. Wang, K. Obara, Y. Ito, and M. Kinoshita (2006) A discrete episode of seismic and aseismic deformation of the Nankai trough subduction zone accretionary prism and incoming Philippine Sea plate. Earth Planet. Sci. Lett., 242, 73–84.
Dobry, R., R. S. Ladd, F. Y. Yokel, R. M. Chung, and D. Powell (1982) Prediction of pore water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method. National Bureau of Standards Building Science Series, 138, National Bureau of Standards and Technology, Gaithersburg, Md.,143-150.
Dobry, R. (1989) Some basic aspects of soil liquefaction during earthquakes. Ann. N. Y. Acad. Sci., 558, 172–182.
Dvorkin, J., R. Nolen-Hoeksema, and A. Nur (1994) The squirt-flow mechanism: Macroscopic description. Geophysics, 59, 428–438.
Elkhoury, J. E., E. E. Brodsky, and D. C. Agnew (2006) Seismic waves increase permeability. Nature, 411, 1135–1138.
Gavrilenko, P., G. MeliKadze, T. Chelidze, D. Gibert, and Kumsiashvili (2000) Permanent water level drop associated with the Spitak earthquake: Observations at Lisi borehole (Republic of Georgia) and modeling. Geophys. J. Int., 143, 83–98.
Ge, S. and C. Stover (2000) Hydrodynamic response to strike- and dip-slip faulting in a half space. J. Geophys. Res., 105, 25513–25524.
Hazirbaba, K. and E. M. Rathje (2004) A comparison between in situ and laboratory measurements of pore water pressure generation, in 13th World Conference on Earthquake Engineering, paper no. 1220, Vancouver.
Hamiel, Y., V. Lyakhovsky, and A. Agnon (2005) Rock dilation, nonlinear deformation, and pore pressure change under shear. Earth Planet. Sci. Lett, 237, 577–589.
Ho, C. S. (1986) A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125, 1–16.
Hou, C. S., J. C. Hu, K. E. Ching, Y. G. Chen, C. L. Chen, L. W. Cheng, S. H. Huang, and C. H. Lo (2009) The crustal deformation of the Ilan Plain acted as a western most extension of the Okinawa Trough. Tectonophysics, 466, 344-355, doi: 10.1016/j.tecto.2007.11.022.
Hsu, S. K. (2001) Subduction / collsion complexities in the Taiwan-Rykyu junction area: Tectonics of the north-western corner of the Philippine Sea plate. Terr. Atmos. Ocean. Sci., Supplementary Issue, 209-230.
Hsu, T. L. (1962) Recent faulting in the longitudinal valley of eastern Taiwan. Memoir Geol. Soc. China, 1, 95–102.
Hu, J. C., C. S. Hou, L. C. Shen, Y. C. Chan, R. F. Chen, C. Huang, R. J. Rau, K. H. Chen, C. W. Lin, M. H. Huang, and P. F. Nien (2007) Fault activity and lateral extrusion inferred from velocity field revealed by GPS measurements in the Pingtung area of southwestern Taiwan. J. Asian Earth Sci., 35, 287-302, doi:10.1016/j.jseaes.
Husen, S. and E. Kissling (2001) Postseismic fluid flow after the large subduction earthquake of Antofagasta, Chile. Geology, 29, 847–850.
Igarashi, G. and H. Wakita (1995) Geochemical and hydrological observations for earthquake prediction in Japan. J. Phys. Earth, 43, 585–598.
Ishihara, K. (1996) Soil Behavior in Earthquake Geotechnics, Oxford University Press Inc., New York, pp.350
Jang, C. S., C. W. Liu, Y. Chia, L. H. Cheng, and Y. C. Chen (2008) Changes in hydrogeological properties of the River Choushui alluvial fan aquifer due to the 1999 Chi-Chi earthquake, Taiwan. Hydrogeol. J., 16, 389–97.
Jonsson, S., P. Segall, R. Pedersen, and G. Bjornsson (2003) Postearthquake ground movements correlated to pore-pressure transients. Nature, 424, 179–183.
Kilb, D., J. Gomberg, and P. Bodin (2002) Aftershock triggering by complete Coulomb stress changes. J. Geophys. Res., 107, 2060, doi:10.1029/2001JB000202.
King, C. Y., S. Azuma, G. Igarashi, M. Ohno, H. Saito, and H. Wakita (1999) Earthquake-related water-level changes at 16 closely clustered wells in Tono, central Japan. J. Geophys. Res., 104, 13073–13082.
Kitagawa, Y., N. Koizumi, M. Takahashi, N. Matsumoto, and T. Sato (2006) Changes in groundwater levels or pressures associated with the 2004 earthquake off the west coast of northern Sumatra (M 9.0). Earth Planets Space, 58, 173–179.
Koizumi, N., Y. Kitagawa, N. Matsumoto, M. Takahashi, T. Sato, O. Kamigaichi, and K. Nakamura (2004) Preseismic groundwater level changes induced by crustal deformations related to earthquake swarms off the east coast of Izu Peninsula, Japan. Geophys. Res. Lett., 31, L10606, doi: 10.1029/2004GL019557.
Koizumi, N., W. C. Lai, Y. Kitagawa, and Y. Matsumoto (2004) Comment on “Coseismic hydrological changes associated with dislocation of the September 21, 1999 Chichi earthquake, Taiwan” by Min Lee et al. Geophys. Res. Lett., 31, L13603, doi:10.1029/2004GL019897.
Ku, C. Y., S. K. Hsu, J. C. Sibuet, and C. H. Tsai (2009) The neo-tectonic structure of the southwestern tip of the Okinawa Trough. Terr. Atmos. Ocean. Sci., 20, 749-759
Lacombe, O., F. Mouthereau, J. Angelier, B. Deffontaines (2001) Structural, geodetic and seismological evidence for tectonic escape in SW Taiwan. Tectonophysics, 333, 323–345.
Lay, T. and T. C. Wallace (1995) Modern Global Seismology, Academic Press, San Diego, pp. 521.
Lee, M., T. K. Liu, K. F. Ma, and Y. M. Chang (2002) Coseismic hydrological changes associated with dislocation of the September 21, 1999 Chichi earthquake, Taiwan. Geophys. Res. Lett., 29, 1824, doi:10.1029/2002GL015116.
Liang, W. T., J. C. Lee, and B. Y. Kuo (2005) Left-lateral strike-slip faulting in Ilan: Lateral extrusion at the transition between Taiwan Mountain Range and the Okinawa Trough. Geodynamics and Environment in Asia International Conference and 5th Taiwan-France Earth Science Symposium, Abstract, 104-108.
Lin, A. T. and A. B. Watts (2002). Origin of the west Taiwan basin by orogenic loading and flexure of a rifted continental margin. J. Geophys. Res. 107,2185–2203.
Lin, J. Y., S. K. Hsu, and J. C. Sibuet (2004) Melting features along the western Ryukyu slabedge (north east Taiwan): Tomographic evidence. J. Geophys. Res., 109, B12402, doi: 10.1029/2004JB003260.
Liu, L. B., E. A. Roeloffs, and X. Y. Zheng (1989) Seismically induced water level oscillations in the Wali well, Beijing, China. J. Geophys. Res., 94, 9453–9462.
Liu, C., M. W. Huang, and Y. B. Tsai (2006) Water level fluctuations induced by ground motions of local and teleseismic earthquakes at two wells in Hualien, Eastern Taiwan. Terr. Atmos. Ocean. Sci., 17, 371-389.
Lockner, D. A. and N. M. Beeler (2002) Rock failure and earthquakes. In: Lee W. H. K., Kanamori H., Jennings P. C., and Kisslinger C. (eds.) International Handbook of Earthquake and Engineering Seismology, pp. 505–537. San Diego: Academic Press.
Luong, M. P. (1980) Stress-strain aspects of cohesionless soils under cyclic and transient loading. in Pande, G. N., and Zienkiewicz, O. C., eds., Proc. Intern. Symp. Soils under Cyclic and Transient Loading, A. A. Balkema, Rotterdam, Netherlands, p.315–324.
Manga, M. (2007) Did an earthquake trigger the May 2006 eruption of the Lusi mud olcano? Eos Trans. AGU, 88, 201. doi:10.1029/2007EO180009.
Manga, M. and E. E. Brodsky (2006) Seismic triggering of eruptions in the far field: Volcanoes and geysers. Ann. Rev. Earth Planet. Sci., 34, 263–291.
Manga, M. and C. Y. Wang (2007) Earthquake hydrology. In: Kanamori, H. (ed.), Treatise on Geophysics, 4, Elsevier, Ch. In: Treatise on Geophysics, G. Schubert editor, 4, 293–320.
Matsumoto, N. and M. Takahashi (1994) State space modeling to detect changes of groundwater level associated with earthquakes, IUGG XXI General Assembly, Int. Union Geod. Geophys., Boulder, Colo.
Matsumoto, N. and E. A. Roeloffs (2003) Hydrological response to earthquakes in the Haibara well, central Japan – II. Possible mechanism inferred from time-varying hydraulic properties. Geophys. J. Int., 155, 899-913.
Matsumoto, N., G. Kitagawa, and E. A. Roeloffs (2003) Hydrological response to earthquakes in the Haibara well, central Japan – I. Water level changes revealed using state space decomposition of atmospheric pressure, rainfall and tidal responses. Geophys. J. Int., 155, 885–898.
Mavko, G., T. Mukerji, and J. Dvorkin (1998) The Rock Physics Handbook: Tools for Seismic Data Analysis in Porous Media. New York; Cambridge University Press.
Mogi, K., H. Mochizuki, and Y. Kurokawa (1989) Temperature changes in an artesian spring at Usami in the Izu Peninsula (Japan) and their relation to earthquakes. Tectonophysics, 159, 95-108.
Montgomery, D. R. and M. Manga (2003) Streamflow and water well responses to earthquakes. Science, 300, 2047–2049.
Neuzil, C. E. (2003) Hydromechanical coupling in geologic processes. Hydrogeol. J., 11, 41–83.
Palciauskas, V. V. and P. A. Domenico (1989) Fluid pressure in deforming porous rocks. Water Resour. Res., 25, 203–219.
Pride, S. R., J. G. Berryman, and J. M. Harris (2004) Seismic attenuation due to wave-induced flow. J. Geophy. Res., 109, B01201, doi:10.1029/2003JB002639.
Quilty, E. and E. A. Roeloffs (1997) Water level changes in response to the December 20, 1994, M 4.7 earthquake near Parkfield, California. Bull. Seismol. Soc. Am., 87, 310–317.
Rice, J. R. and M. P. Cleary (1976) Some basic stress diffusion solutions for fluid saturated elastic porous media with compressible constituents. Rev. Geophys. Space Phys., 14, 227–241.
Roeloffs, E. A. (1996) Poroelastic techniques in the study of earthquake-related hydrologic phenomena. Adv. Geophys., 37, 135–195.
Roeloffs, E. A. (1998) Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes. J. Geophys. Res., 103, 869–889.
Roeloffs, E. A., M. Sneed, D. L. Galloway, M. L. Sorey, C. D. Farrar, J. F. Howle, and J. Hughes (2003) Water-level changes induced by local and distant earthquakes at Long Valley caldera, California. J. Volcan. Geotherm. Res., 127, 269–303.
Rojstaczer, S. and S. Wolf (1992) Permeability changes associated with large earthquakes: An example from Loma Prieta, California. Geology, 20, 211-214, doi:10.1130/0091-7613
Rojstaczer, S., S. Wolf, and R. Michel (1995) Permeability enhancement in the shallow crust as a cause of earthquake-induced hydrological changes. Nature, 373, 237–239.
Sato, T., M. Takahashi, and K. Ozawa (1997) Hydrologic changes associated with the swarm activities off the east coast of Izu Peninsula in October, 1996. Rep. Coord. Comm. Earthq. Pred., 57, 367-372. (in Japanese)
Seed, H. B. and K. L. Lee (1966) Liquefaction of saturated sands during cyclic loading. J. Soil Mech. Found. Div., 92, 105–134.
Sibuet, J. C., B. Deffontaines, S. K. Hsu, N. Thareau, J. P. Le Formal, C. S. Liu, and ACT party (1998) Okinawa Trough backarc basin: Early tectonic and magmatic evolution. J. Geophys. Res., 103, 30245-30267, doi: 10.1029/98JB01823.
Silver, P. G. and H. Wakita (1996) A search for earthquake precursors. Science, 273, 77–78.
Vucetic, M. (1994) Cyclic threshold of shear strains in soils. J. Geotech. Eng., 120, 2208–2228.
Wakita, H. (1975) Water wells as possible indicators of tectonic strain. Science, 189, 553–555.
Wang, C. S., M. L. Yang, C. P. Chou, Y. C. Chang, and C. S. Lee (2000) Westward extension of the Okinawa Trough at its western end in the northern Taiwan area: Bathymetric and seismological evidence. Terr. Atmos. Ocean. Sci., 11, 459-480.
Wang, C. Y. (2007) Liquefaction beyond the near field. Seismo. Res. Lett., 78, 512–517.
Wang, C. Y. and M. Manga (2010) Hydrologic responses to earthquakes and a general metric. Geofluids, 10, 206-216. doi: 10.1111/j.1468-8123.2009.00270.x
Wang, C. Y. and Y. Chia (2008) Mechanism of water level changes during earthquakes: Near field versus intermediate field. Geophys. Res. Lett., 35, L12402, doi:10.1029/2008GL034227.
Wang, C. Y., L. H. Cheng, C. V. Chin, and S. B. Yu (2001) Coseismic hydrologic response of an alluvial fan to the 1999 Chi-Chi earthquake, Taiwan. Geology, 29, 831–834.
Wang, C. Y., Y. Chia, P. L. Wang, and D. Dreger (2009) Role of S waves and Love waves in coseismic permeability enhancement. Geophys. Res. Lett., 36, L09404, doi:10.1029/2009GL037330.
Yeh, Y. T. and H. C. Chiu (1994) Two new strong-motion arrays in Hualien, Taiwan. Proceedings of the 10th World Conference on Earthquake Engineering, 19–24 July, Madrid Spain, 6947.
Youd, T. L. (2003) Liquefaction mechanisms and induced ground failure. In: Lee, W. H. K., Kanamori H., Jennings, P. C., and Kisslinger, C. (eds.) International Handbook of Earthquake and Engineering Seismology, Part B, pp. 1159–1173. San Diego: Academic Press.
Yu, M. S. (1994) Wrench-fault characteristics of the Taitung longitudinal valley fault zone. Ti-Chih, 1, 121-147. (in Chinese)
Yu, G. K. and B. J. Mitchell (1988) A study of the non-tectonic influences on groundwater level fluctuations. Proc. Geol. Soc. China, 31, 111-124.
Yu, S. B., L. C. Kuo, R .S. Punongbayan and E. G. Ramos (1999) GPS observation of
crustal motion in the Taiwan-Luzon region. Geophys. Res. Lett., 26, 923-926.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45667-
dc.description.abstract本研究基於台灣地區三口高頻監測井之水位記錄,對於觀測期間內發生之地震,分析水位變化與地震規模、距離、分布等之相關性,並與體積應變互相驗證,探討同震水位變化機制。2004年至2009年觀測期間內,花蓮、壯圍井二號及赤山三號井分別記錄到280、97及47次地震引發的水位振盪現象,其中18、25及5次同時出現同震持續式水位變化。花蓮井只對附近地震反應出持續式水位變化,壯圍二號井能反應遠在1935公里外的汶川地震,而赤山三號則反應台灣東部及南部的地震。同震地下水位變化的發生不僅與震源距離及地震規模相關,也可能受到地質及構造的影響。大幅度的同震水位振盪未必導致持續式水位變化;有些同震水位振盪較小,卻出現持續式水位變化。由於三口井之持續式地下水位變化幅度與水位振盪幅度的相關係數分別為0.51、0.53及0.48,顯示震波振盪難以解釋同震持續式水位變化。土壤液化可以解釋同震水位上升現象,然而花蓮、壯圍井二號及赤山三號井持續式水位變化中僅有17%、 16%及0%出現上升。震動導致地層透水性增加則難以解釋花蓮井及壯圍二號井既觀測到同震水位上升,也出現同震水位下降,更難以解釋赤山三號井同震持續式水位變化速率的差異。至於同震持續式水位變化方向對映體積應變計算的結果,相符的程度為83%、60%及80%。由於在不同地質狀況下,含水層的特性會影響應力重新調整的狀況,可能導致實際上觀測到的同震水位變化可能與簡化條件下錯位模型計算出的體積應變不盡相符。因此,震波振盪難以解釋三口監測井的同震持續式水位變化,同震持續式水位變化可能是靜態體積應變所造成,但計算體積應變的模型仍需改進。zh_TW
dc.description.abstractBase on high sampling rate records of three monitoring wells in Taiwan, we analyze the relation between coseismic water-level change and earthquake magnitude, hypocentral distance and distribution, and compare the calculated volumetric strain change with observed coseismic water-level change, in order to discuss possible mechanisms to sustained water-level change. Between 2004 and 2009, the Hualien, Zhuagnwei-2 and Chishan-3 wells recorded 280, 97, 47 oscillatory water-level changes, and 18, 25, 5 sustained water-level changes, respectively. Those earthquakes, which caused sustained water-level change, were located near the Hualien well. While the Zhuangwei-2 well recorded earthquakes as far as the 2008 Wenchuan earthquake 1935 km away from the well. And the Chishan-3 well recorded earthquakes located in the southern and eastern Taiwan. Geology and structure as well as hypocentral distance and earthquake magnitude affect coseismic water-level changes. There are earthquakes that induced large water level oscillations with no sustained water-level change, but some earthquakes induced small water level oscillations with induced sustained water-level change. To the Hualien, Zhuangwei-2 and Chishan-3 wells, the square correlation coefficient between sustained water-level change and oscillation range are 0.51, 0.53 and 0.48, respectively. Therefore, seismic shaking may not account for sustained water-level change. Liquefaction can account for coseismic rises. However, only 17% of sustained water-level changes at the Hualien well, 16% at the Zhuangwei-2 well, and 0% at the Chishan-3 well showed coseismic rises. Enhanced permeability may not account for the coseismic changes in the three wells, because it can’t apply to the Hualien and Zhuangwei-2 well that recorded coseismic rises and falls, and the different rates in sustained water-level changes at the Chishan-3 well. Static strain change can account for 83% of coseismic changes at the Hualien well, 60% at the Zhuangwei-2 well, and 80% at the Chishan-3 well. The inconsistency between calculated strains and observations could be caused by different physical properties of aquifers and the complexity of stress redistribution. Therefore, coseismic sustained water-level changes at the three wells may due to static strain changes, but a simple dislocation model may be insufficient to predict pore pressure change at a specific site.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:44:26Z (GMT). No. of bitstreams: 1
ntu-99-R96224104-1.pdf: 25556038 bytes, checksum: ce6362682185f11a39f71b9573912d53 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
Table of Contents v
Figure List ix
Table List xiv
Chapter 1 Introduction 1
1.1 Objective 1
1.2 Construction of This Study 4
Chapter 2 Review of Coseismic Water-level Change 7
2.1 Response of Pore pressure to Stress 7
2.1.1 Effect of Static Stress 9
2.1.2 Effect of Dynamic Strain 11
2.2 Observation of Coseismic Groundwater-level Change 12
2.2.1 Oscillatory Groundwater-level Change 12
2.2.2 Sustained Groundwater-level Change 14
2.3 Mechanisms of Sustained Water-level Change 16
2.3.1 Coseismic Static Strain 16
2.3.2 Coseismic Consolidation and Liquefaction 17
2.3.3 Enhanced Permeability or Porosity 19
Chapter 3 Monitoring Records 21
3.1 Monitoring wells 21
3.1.1 The Hualien Well 22
3.1.2 The Zhuangwei-2 Well 28
3.1.3 The Chishan-3 Well 36
3.1.4 Water-stage Recorder 44
3.2 Earthquake Records 44
3.3 Barometric Pressure, Rainfall, and Ocean Tide Records 44
Chapter 4 Methods 45
4.1 Long-term water-level Change Analysis 45
4.2 Identify Coseismic Groundwater-level Change 48
4.1.1 Identify Oscillatory Groundwater-level Change 48
4.1.2 Identify Sustained Groundwater-level Change 49
4.1.3 Calculate oscillatory and sustained Groundwater-level Changes 50
4.3 Analysis the Correlation between Groundwater Records and Seismograms 51
4.4 Volumetric Strain calculation 52
Chapter 5 Coseismic Water-level Changes at the Hualien Well 53
5.1 Distribution of Earthquakes that Induced Coseismic Water-level Changes 53
5.2 Oscillatory Water-level Change 55
5.2.1 Oscillatory Water-level Change and Hypocentral Distance 55
5.2.2 The Threshold of Oscillatory Water-level Change 56
5.3 Sustained Water-level Change 56
5.3.1 Water-level Change and Hypocentral Distance 56
5.3.2 The Threshold of Sustained Water-level Change 58
5.3.3 The Pattern of Sustained Coseismic Change 59
5.3.4 The Time History of Sustained Coseismic Change 61
5.4 Oscillatory and Sustained Water-level Changes 62
5.5 Sustained Water-level Change and Volumetric Strain 67
Chapter 6 Coseismic Water-level Changes at the Zhuangwei-2 Well 71
6.1 Distribution of Earthquakes that Induced Coseismic Water-level Changes 71
6.2 Oscillatory Water-level Change 73
6.2.1 Oscillatory Water-level Change and Hypocentral Distance 73
6.2.2 The Threshold of Oscillatory Water-level Change 74
6.3 Sustained Water-level Change 75
6.3.1 Water-level Change and Hypocentral Distance 75
6.3.2 The Threshold of Sustained Water-level Change 76
6.3.3 The Pattern of Sustained Coseismic Change 77
6.3.4 The Time History of Sustained Coseismic Change 80
6.4 Oscillatory and Sustained Water-level Changes 83
6.5 Sustained Water-level Change and Volumetric Strain 85
Chapter 7 Coseismic Water-level Changes at the Chishan-3 Well 89
7.1 Distribution of Earthquakes that Induced Coseismic Water-level Changes 89
7.2 Oscillatory Water-level Change 90
7.2.1 Oscillatory Water-level Change and Hypocentral Distance 90
7.2.2 The Threshold of Oscillatory Water-level Change 91
7.2.3 Oscillatory Water-level Change and Ground Displacement 92
7.3 Sustained Water-level Change 94
7.3.1 Water-level Change and Hypocentral Distance 94
7.3.2 The Threshold of Sustained Water-level Change 95
7.3.3 The Pattern of Sustained Coseismic Change 96
7.3.4 The Time History of Sustained Coseismic Change 98
7.4 Oscillatory and Sustained Water-level Changes 98
7.5 Sustained Water-level Change and Volumetric Strain 100
Chapter 8 Discussion 103
8.1 Coseismic Oscillatory Water-level Change 103
8.1.1 Coseismic Oscillatory Water-level Change and Earthquake Distribution 103
8.1.2 The Threshold of Coseismic Oscillatory Water-level Change 103
8.2 Coseismic Sustained Water-level Change 104
8.2.1 Coseismic Sustained Water-level Change and Earthquake Distribution 104
8.2.2 The Threshold of Coseismic Sustained Water-level Change 109
8.2.3 Directions and Patterns of Coseismic Sustained Water-level Change 109
8.3 Relationship between Oscillatory and Sustained Water-level Change 110
8.3.1 Coseismic sustained and oscillatory water-level change 110
8.3.2 Large water-level oscillations with no sustained water-level change 110
8.4 Mechanisms of Sustained Water-level Change 111
8.4.1 Mechanism of Coseismic Liquefaction 111
8.4.2 Mechanism of Enhanced Permeability 112
8.4.3 Mechanism of Static Strain Change 113
Chapter 9 Conclusions 115
Chapter 10 Suggestions 117
References 119
Appendices 127
Appendix A: Well Parameters 127
Appendix B: Yearly Two-minute Interval Records with Barometric Pressure, Rainfall, and Earthquakes 128
B.1 The Hualien Well 128
B.2 The Zhuangwei-2 Well 134
B.3 The Chishan-3 Well 140
dc.language.isoen
dc.subject赤山井zh_TW
dc.subject地下水zh_TW
dc.subject同震zh_TW
dc.subject持續式變化zh_TW
dc.subject花蓮井zh_TW
dc.subject壯圍井zh_TW
dc.subjectthe Zhuangwei wellen
dc.subjectthe Chishan wellen
dc.subjectgroundwateren
dc.subjectcoseismicen
dc.subjectsustained changeen
dc.subjectthe Hualien wellen
dc.title同震持續式地下水位變化機制之探討zh_TW
dc.titleStudies on Mechanisms of Coseismic Sustained Groundwater-level Changesen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡植慶(Jyr-Ching Hu),龔源成(Yuancheng Gung),劉聰桂(Tsung-Kwei Liu)
dc.subject.keyword地下水,同震,持續式變化,花蓮井,壯圍井,赤山井,zh_TW
dc.subject.keywordgroundwater,coseismic,sustained change,the Hualien well,the Zhuangwei well,the Chishan well,en
dc.relation.page144
dc.rights.note有償授權
dc.date.accepted2010-08-09
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
24.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved