請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45646完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 董成淵 | |
| dc.contributor.author | Pei-Shiou Huang | en |
| dc.contributor.author | 黃培修 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:32:27Z | - |
| dc.date.available | 2019-08-20 | |
| dc.date.copyright | 2009-08-21 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-19 | |
| dc.identifier.citation | 1. Kadler KE, Holmes DF, Trotter JA, Chapman JA. Collagen fibril formation. Biochemical Journal 1996;316:1-11.
2. Miyahara M, Hayashi K, Berger J, Tanzawa K, Njieha FK, Trelstad RL, Prockop DJ. Formation of Collagen Fibrils by Enzymic Cleavage of Precursors of Type-I Collagen Invitro. Journal of Biological Chemistry 1984;259:9891-9898. 3. Brightman AO, Rajwa BP, Sturgis JE, McCallister ME, Robinson JP, Voytik-Harbin SL. Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro. Biopolymers 2000;54:222-234. 4. Roeder BA, Kokini K, Sturgis JE, Robinson JP, Voytik-Harbin SL. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. Journal of Biomechanical Engineering-Transactions of the Asme 2002;124:214-222. 5. Comper WD, Veis A. Mechanism of Nucleation for Invitro Collagen Fibril Formation. Biopolymers 1977;16:2113-2131. 6. Farber S, Garg AK, Birk DE, Silver FH. Collagen Fibrillogenesis Invitro - Evidence for Pre-Nucleation and Nucleation Steps. International Journal of Biological Macromolecules 1986;8:37-42. 7. Miyahara M, Njieha FK, Prockop DJ. Formation of Collagen Fibrils Invitro by Cleavage of Procollagen with Procollagen Proteinases. Journal of Biological Chemistry 1982;257:8442-8448. 8. Mcbride DJ, Kadler KE, Hojima Y, Prockop DJ. Self-Assembly into Fibrils of a Homotrimer of Type-I Collagen. Matrix 1992;12:256-263. 9. Ge J, Cui FZ, Wang XM, Wang Y. New evidence of surface mineralization of collagen fibrils in wild type zebrafish skeleton by AFM and TEM. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 2007;27:46-50. 10. Zou Q, Leang KK, Sadoun E, Reed MJ, Devasia S. Control issues in high-speed AFM for biological applications: Collagen imaging example. Asian Journal of Control 2004;6:164-178. 11. Cisneros DA, Hung C, Franz CA, Muller DJ. Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy. Journal of Structural Biology 2006;154:232-245. 12. Strasser S, Zink A, Janko M, Heckl WM, Thalhammer S. Structural investigations on native collagen type I fibrils using AFM. Biochemical and Biophysical Research Communications 2007;354:27-32. 13. Yang L, Van der Werf KO, Bennink ML, Dijkstra PJ, Feijen J. Viscoelastic behavior of individual collagen fibrils tested by AFM. Tissue Engineering 2007;13:1777-1777. 14. Chu SW, Tai SP, Chan MC, Sun CK, Hsiao IC, Lin CH, Chen YC, Lin BL. Thickness dependence of optical second harmonic generation in collagen fibrils. Optics Express 2007;15:12005-12010. 15. Tiaho F, Recher G, Rouede D. Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy. Optics Express 2007;15:12286-12295. 16. Liu SH, Yang RS, Alshaikh R, Lane JM. Collagen in Tendon, Ligament, and Bone Healing - a Current Review. Clinical Orthopaedics and Related Research 1995:265-278. 17. Marenholz I, Soderhall C, Kerscher T, Ruschendorf F, Esparza-Gordillo J, Worm M, Gruber C, Mayr G, Albrecht M, Rohde K, Schulz H, Wahn U, Hubner N, Lee Y. Variants in a novel epidermal collagen gene (COL29A1) are associated with atopic dermatitis. Allergy 2008;63:612-612. 18. Leikina E, Mertts MV, Kuznetsova N, Leikin S. Type I collagen is thermally unstable at body temperature. Proceedings of the National Academy of Sciences of the United States of America 2002;99:1314-1318. 19. Kadler KE, Hojima Y, Prockop DJ. Assembly of Collagen Fibrils De Novo by Cleavage of the Type-I Pc-Collagen with Procollagen C-Proteinase - Assay of Critical Concentration Demonstrates That Collagen Self-Assembly Is a Classical Example of an Entropy-Driven Process. Journal of Biological Chemistry 1987;262:15696-15701. 20. Prockop DJ, Fertala A. The collagen fibril: The almost crystalline structure. Journal of Structural Biology 1998;122:111-118. 21. Brinckmann Jr, M*¼ller PK, Notbohm H, SpringerLink (Online service). Collagen Primer in Structure, Processing and Assembly. Topics in Current Chemistry, 247. Berlin Heidelberg: Springer-Verlag GmbH., 2005. 22. Usha R, Ramasami T. Effect of hydrogen-bond-breaking reagent (urea) on the dimensional stability of rat tail tendon (RTT) collagen fiber. Journal of Applied Polymer Science 2002;84:975-982. 23. Gatherco.Lj, Keller A, Shah JS. Periodic-Wave Pattern in Native Tendon Collagen - Correlation of Polarizing with Scanning Electron-Microscopy. Journal of Microscopy-Oxford 1974;102:95-106. 24. Hulmes DJS, Jesior JC, Miller A, Berthetcolominas C, Wolff C. Electron-Microscopy Shows Periodic Structure in Collagen Fibril Cross-Sections. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences 1981;78:3567-3571. 25. Kadler K. Extracellular Matrix .1. Fibril-Forming Collagens. Protein Profile 1995;2:491-619. 26. Bella J, Liu J, Kramer R, Brodsky B, Berman HM. Conformational effects of Gly-X-Gly interruptions in the collagen triple helix. Journal of Molecular Biology 2006;362:298-311. 27. Fichard A, Kleman JP, Ruggiero F. Another Look at Collagen-V and Collagen-Xi Molecules. Matrix Biology 1995;14:515-531. 28. Franken PA, Weinreich G, Peters CW, Hill AE. Generation of Optical Harmonics. Physical Review Letters 1961;7:118-&. 29. Einstein A, Lawson RW. Relativity : the special and the general theory. Routledge, 2001. 30. Christiansen DL, Huang EK, Silver FH. Assembly of type I collagen: fusion of fibril subunits and the influence of fibril diameter on mechanical properties. Matrix Biology 2000;19:409-420. 31. Raub CB, Unruh J, Suresh V, Krasieva T, Lindmo T, Gratton E, Tromberg BJ, George SC. Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties. Biophysical Journal 2008;94:2361-2373. 32. Raspanti M, Viola M, Sonaggere M, Tira ME, Tenni R. Collagen fibril structure is affected by collagen concentration and decorin. Biomacromolecules 2007;8:2087-2091. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45646 | - |
| dc.description.abstract | 二倍頻顯微術用來對膠原蛋白鷹架成像已經被確立為一個可以實行且有效的技術;對於描述膠原蛋白的結構特性,這個顯微技術也同時兼具了低侵入、低光學破壞的特性。由於膠原蛋白是人體中含量最多的蛋白質之一(特別是第一類的膠原蛋白),其自我聚集過程而使其成為具有功能性的單元是許多組織中一個維持平衡的重要過程。可是膠原蛋白自我聚集過程的詳細動力機制卻仍不清楚。因此,在這個研究中,我們利用以脈衝式雷射及掃描系統作為基礎的二倍頻顯微術,「即時的」觀察膠原蛋白的自我聚集過程。況且利用二倍頻顯微術監測膠原蛋白的自我聚集過程來得到這個過程中的結構性資訊,對於理解膠原蛋白生成纖維的過程是相當重要的。
我們實驗中所用的膠體,在過去,已被廣泛的透過其他不同的技術所研究。這些技術像是電子顯微鏡,反射式共軛焦顯微鏡以及光譜光度分析儀都曾用來研究膠原蛋白以及其自我聚集的過程。然而,只有需要非中心對稱結構的二倍頻能夠讓我們明確的研究形成膠原蛋白纖維的過程,並且不需要做額外的樣本處理。此外,前向對後向的二倍頻比值更可以得到膠原蛋白纖維直徑的資訊。 我們的結果證明了利用二倍頻顯微術可以對活體外的膠原蛋白自我聚集過程進行研究;配合更多的發展,這個方法更可以延伸至活體內的膠原蛋白纖維生成過程的研究 | zh_TW |
| dc.description.abstract | Second harmonic generation (SHG) microscopy has already established as a viable and useful technics in imaging collagen scaffold; it is also holds promise as a noninvasive, less photodamage imaging technics for characterizing collagen structure. Since collagen, especially type-I collagen, is one of the most abundant protein in human body, its assembly into functioning units is an important process in maintaining homeostasis of many tissue types. However, the kinetic details of collagen self-assembly process remains unclear. Therefore, in this study, we used SHG microscopy based on a pulsed laser scanning system to monitor the collagen self-assembly process in real-time. Using SHG microscopy to monitor collagen self-assembly process can provide structural informationsI that is important for understanding the fibrillogenesis process.
We used self-assembly in collagen hydrogel as our model as this system has already been investigated extensively using other many different techniqus. Electron microscopy, reflected confocal microscopy, and spectrophotometry had been widely used to investigate the process of collagen self-assembly. However, only the non-centrosymmetric requirement of SHG allows the assembly into collagen fibrils to be studied unequivocably and without additional specimen processing. Moreover, the informations of forwad and backward SHG ratio provide information of the fibril diameter. Our results demonstrate that the collagen self assembly process can be studied by SHG microscopy in vitro, with additional development; our approach can be extended to in vivo investigations of the fibrillogenesis process. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:32:27Z (GMT). No. of bitstreams: 1 ntu-98-R96222064-1.pdf: 3007142 bytes, checksum: e306cfde50312dca3873f37a6aba913c (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 致謝 I
摘要 IV Abstract VI Content VIII Figure Catalog X Table Catalog XI Chapter 1. Introduction 1 Chapter 2. Collagen 3 2.1. Importance of Collagen 3 2.2. Hierarchical Structures of Collagen 4 2.3. Collagen Self-Assembly 6 2.4. Subfamily of Collagen 7 Chapter 3. Basic Principles of Second Harmonic Generation (SHG) Microscopy 9 3.1. Noncentrosymmetric Media 9 3.2. Generation of Frequency-Doubled Radiation 11 3.3. Intrinsic Permutation Symmetry of χ^(2) 12 3.4. Inversion Symmetry Effecting Second-Order Susceptibility 13 3.5. Optical Resolution 14 Chapter 4. Experiment Setup 17 4.1. Optical Imaging System 17 4.2. Preparation of Collagen Gel 19 Chapter 5. Resaults and Discussion 21 5.1. Time-lapsed Collagen Self-Assembly Process 21 5.2. Comparison of Reflected Confocal and SHG Images 23 5.3. Correlations between FSHG/BSHG and Collagen Fibril Diameter 26 5.3.1. Effects of pH Values on Fibril Diameter 27 5.3.2. Effects of Concentration on Fibril Diameter 31 Chapter 6. Conclusion 34 Reference 36 | |
| dc.language.iso | en | |
| dc.subject | 前向/後向二倍頻比值 | zh_TW |
| dc.subject | 二倍頻顯微術 | zh_TW |
| dc.subject | 膠原蛋白 | zh_TW |
| dc.subject | 膠體 | zh_TW |
| dc.subject | 自我聚集 | zh_TW |
| dc.subject | self-assembly | en |
| dc.subject | forward/backward SHG | en |
| dc.subject | Second harmonic generation (SHG) microscopy | en |
| dc.subject | collagen gel | en |
| dc.title | 利用二倍頻顯微術觀察膠原蛋白的自我聚集過程 | zh_TW |
| dc.title | Using Second Harmonic Generation Microscopy to Monitor Collagen Self-Assembly Process | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曹培熙,張顏暉,李宣書 | |
| dc.subject.keyword | 二倍頻顯微術,膠原蛋白,膠體,自我聚集,前向/後向二倍頻比值, | zh_TW |
| dc.subject.keyword | Second harmonic generation (SHG) microscopy,collagen gel,self-assembly,forward/backward SHG, | en |
| dc.relation.page | 38 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-19 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
