Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45643
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周瑞仁(Jui-jen Chou)
dc.contributor.authorWei Chenen
dc.contributor.author陳瑋zh_TW
dc.date.accessioned2021-06-15T04:32:16Z-
dc.date.available2009-08-21
dc.date.copyright2009-08-21
dc.date.issued2009
dc.date.submitted2009-08-19
dc.identifier.citationReferences
1. AI Motor-1001 manual. On-line available at: http://www.robotstore.com/download/AI_MOTOR-1001_manual_v1.02_english.pdf . Accessed 30 June 2007.
2. Bionics. On-line available at: http://en.wikipedia.org/wiki/Bionics. Accessed 30 Mar 2008.
3. Bongard, J., V. Zykov and H. Lipson. 2006. Resilient machines through continuous self-modeling. Science. 314:1118-1121
4. Chen, L., Y. Wang, S. Ma, and B. Li. 2004. Studies on lateral rolling locomotion of a snake robot. IEEE International Conference on Robotics Automation. New Orleans, LA. 26 April-1 May. 5: 5070-5074.
5. Chirikjian, G. S. and J. W. Burdick. 1994. A modal approach to hyper-redundant manipulator kinematics. IEEE Transactions on Robotics and Automation. 10(3): 343-354.
6. CMU Biorobotics Lab. On-line available at: http://www.cs.cmu.edu/~biorobotics/projects/modsnake/. Accessed 1 Mar 2008.
7. Degani, A., H. Choset, A. Wolf and M. A. Zenati. 2006. Highly articulated robotic probe for minimally invasive surgery. IEEE International Conference on Robotics and Automation. Orlando, Florida. 15-19 May. pp.4167-4172
8. González-Gómez, J., H. Zhang, E. Boemo and J. Zhang. 2006. Locomotion capabilities of a modular robot with eight pitch-yaw-connecting modules. International Conference on Climbing and Walking Robots and their Supporting Technologies for Mobile Machines, CLAWAR2006. Brussels, Belgium. 12-14 September.
9. González-Gómez, J., H. Zhang and E. Boemo. 2007. Locomotion Principles of 1D Topology Pitch and Pitch-Yaw-Connecting Modular Robots. Chapter 24 of the Book: Bioinspiration and Robotics: Walking and Climbing Robots, 403-428. Vienna, Austria: Advanced Robotics Systems International and I-Tech Education and Publishing.
10. González-Gómez. 2008. Robóticam modulary locomoción: Aplicación a robots Ápodos. Tesis Doctoral. Madrid: Universidad Autónoma de madrid escuela politécnica superior.
11. Granosik, G., M. Hansen, and J. Borenstein. 2005a. The OmniTread serpentine robot for industrial inspection and surveillance. International Journal of Industrial Robots. 32(2): 139 - 148.
12. Granosik, G. and J. Borenstein. 2005b. Integrated joint actuator for serpentine robots. IEEE/ASME Transactions on Mechatronics. 10(5):473–481.
13. Gray, J. 1946. The mechanism of locomotion in snakes. The Journal of Experimental Biology. 23(2): 101-120.
14. Hasanzadeh, S. and A. A. Tootoonchi. 2008. Adaptive optimal locomotion of snake robot based on CPG-network using fuzzy logic tuner. IEEE Conference on Robotics, Automation and Mechatronics. Chengdu, China. 21-24 Sept. pp.187-192.
15. Hirose, S. 1993. Biologically Inspired Robots (Snake-like Locomotor and Mainipulator). New York: Oxford University Press.
16. Hirose-Fukushima Lab. On-line available at: http://www-robot.mes.titech.ac.jp/home_e.html. Accessed 1 Oct 2007.
17. Hooper, S. L. Central Pattern Generators. Available at:
http://crab-lab.zool.ohiou.edu/hooper/cpg.pdf. Accessed 17 Dec. 2008.
18. Hsieh, Chang-Yu. 2007. Gait Planning and Analysis for Stair Climbing of Snake Robot. Master thesis. Taipei:National Taiwan University Department of Bio-Industrial Mechatronics Engineering. (In Chinese)
19. Liljebäck, P., S. Fjerdingen, K. Y. Pettersen and Ø. Stavdahl. 2009. A snake robot joint mechanism with a contact force measurement system. IEEE International Conference on Robotics and Automation. Kobe, Japan. 12-17 May. pp: 3815-3820.
20. Lipkin, K., I. Brown, A. Peck, H. Choset, J. Rembisz, P. Gianfortoni and A. Naaktgeboren. 2007. Differentiable and piecewise differentiable gaits for snake robots. IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, CA. 29 Oct. -2 Nov. pp.1864-1869.
21. Ma, S., H. Araya and L. Li. 2001. Development of a creeping snake-robot. IEEE International Symposium on Computational Intelligence in Robotics and Automation, Alberta, Canada. 29 Jul.-1 Aug. pp.77-82.
22. Murata , S., E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita and S. Kokaji. 2002. M-TRAN: self-reconfigurable modular robotic system. IEEE/ASME Transactions on Mechatronics. 7(4):431-441.
23. Palo Alto Research Center (PARC). Available at: http://www.parc.xerox.com/. Accessed 1 Dec. 2008.
24. Sfakiotakis, M., D. M. Lane and J. B. C. Davies. 1999. Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering 24(2): 237-252.
25. Transeth, A. A. and K. Y. Pettersen. 2007. Developments in snake robot modeling and locomotion. International Conference on Control, Automation, Robotics and Vision. Singapore . 5-8 Dec. pp: 1 – 8.
26. Wang, W., H. Zhang, G. Zong and J. Zhang. 2006. Design and realization of a novel reconfigurable robot with serial and parallel mechanisms. IEEE International Conference on Robotics and Biomimetics. Kunming, China. 17-20 Dec. pp.397-702.
27. Zhang, H., W. Wang, Z. Deng, G. Zong and J. Zhang. 2006. A novel reconfigurable robot for urban search and rescue. International Journal of Advanced Robotic Systems 3(4): 359-366.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45643-
dc.description.abstract本研究針對pitch-yaw串接型機器蛇,利用中樞模式產生器(CPG)模型產生可微分步態,就機器蛇各關節的座標與接地點之變化進行模擬及分析,找出各種不同步態接地點的移動與模型參數之關係,並進一步實現於機器蛇上。所分析與實作於機器蛇上的六種步態分別為直線步態、轉彎步態、滑動步態、側向平移步態、旋轉步態和滾動步態。使用中樞模式產生器模型來實現機器蛇之步態有以下優點:可簡化控制演算法、提升運算速度、產生順暢的動作等。本研究針對串接型機器蛇的長度與節數提出一套旋轉步態之參數設定規則,最後並提出一套機器蛇各種步態參數設定的流程,使能系統而有效地產生機器蛇的步態。zh_TW
dc.description.abstractThe purpose of this paper is to implement differentiable gaits of pitch-yaw connecting snake robots through investigating the coordinates of each joints and the motion of ground points based on the central pattern generator (CPG) model. Six different gaits, i.e., rectilinear, turning, slithering, lateral shift, rotating and rolling gaits, have been analyzed and implemented on a real snake robot, which consists of 16 joints. Using CPG model to implement the gaits of snake robots can simplify thecontrol, accelerate the computational speed and smooth the movements. A new rule for the parameter setting of rotating gait was proposed for snake robots with different length and different number of joints. Finally, a procedure for the gaits determination of those differentiable gaits, based on CPG, has been developed. Thus the gaits of snake robots can be generated more systematically and efficiently.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:32:16Z (GMT). No. of bitstreams: 1
ntu-98-R96631034-1.pdf: 2255026 bytes, checksum: 32debbb5434458fb1f2a3964725e543e (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents論文口試委員審定書 i
誌謝 …….. ii
摘要 .…… iii
Abstract….. iv
Table of Contents.. v
Figures …... viii
Tables……. xii
List of symbols ……. xiii
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Classification of modular robots and snake robots 4
2.2 Sinusoidal CPGs model 7
2.3 Gaits of snake robots 11
2.3.1 Rectilinear gait 13
2.3.2 Turning gaits 16
2.3.3 Lateral shift gait 16
2.3.4 Rotating gait 17
2.3.5 Slithering gait 18
2.3.6 Rolling gait 18
Chapter 3 Materials and Methods 20
3.1 Two CPG models for snake robots 20
3.2 Analysis of body shapes and ground points 27
3.2.1 Coordinates of body shape 28
3.2.2 Motion analysis of ground points 32
3.3 Analysis and development of differentiable gaits 39
3.3.1 Rectilinear gait 39
3.3.2 Turning gaits 40
3.3.3 Slithering gait 41
3.3.4 Lateral shift gait 42
3.3.5 Rotating gait 43
3.4 Experimental snake robot 46
Chapter 4 Results and Discussion 48
4.1 Implementation of differentiable gaits for snake robot 48
4.1.1 Rectilinear gait 48
4.1.1.1 Simple rectilinear gait 48
4.1.1.2 S shape rectilinear gait 49
4.1.1.3 Double- shape rectilinear gait 51
4.1.2 Turning gait 53
4.1.3 Slithering gait 55
4.1.4 Lateral shift gait 59
4.1.5 Rotating gait 62
4.1.6 Rolling gait 66
4.2 Gaits determination of the snake robot 69
Chapter 5 Conclutions 72
References 73
dc.language.isoen
dc.subject旋轉步態zh_TW
dc.subject機器蛇zh_TW
dc.subject中樞模式產生器模型zh_TW
dc.subject可微分步態zh_TW
dc.subjectCentral pattern generator (CPG)en
dc.subjectRotating gaiten
dc.subjectDifferential gaiten
dc.subjectSnake roboten
dc.title利用接地點運動分析與實現機器蛇之CPG可微分步態zh_TW
dc.titleAnalysis and Implementation of CPG Differentiable Gaits of Snake Robots based on the Motion of Ground Pointsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee萬一怒(Ye-Nu Wan),林達德(Ta-Te Lin),艾群(Chyung Ay),黃緒哲(Shiuh-Jer Huang)
dc.subject.keyword機器蛇,中樞模式產生器模型,可微分步態,旋轉步態,zh_TW
dc.subject.keywordSnake robot,Central pattern generator (CPG),Differential gait,Rotating gait,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2009-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved