Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45639
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor馮哲川(Zhe Chuan Feng)
dc.contributor.authorYu Li-Wuen
dc.contributor.author吳于立zh_TW
dc.date.accessioned2021-06-15T04:32:01Z-
dc.date.available2010-09-02
dc.date.copyright2009-09-02
dc.date.issued2009
dc.date.submitted2009-08-19
dc.identifier.citation[1]M. Katsikini, F. Pinakidou, E.C. Paloura, F. Boscherini, E. Wendler and W. Wesch, Materials Science And Engineering B-Advanced Functional Solid-State Materials, 152 132 (2008).
[2]FCWang, C L Cheng, Y F Chen, C F Huang and C C Yang, Semicond. Sci. Technol., 22 896 (2007).
[3]Pankove J I and Moustakas T D (ed) Gallium Nitride (GaN) I, Semiconductors and Semimetals, 50 (San Diego, CA: Academic) (1998).
[4]Chen J W, Chen Y F, Lu H and Schaff W J, Appl. Phys. Lett., 87 041907 (2005).
[5]I. H. Lee, I. H. Choi, C. R. Lee, E. J. Shin, D. Kim, S. K. Noh, S. J. Son, K. Y. Lim, and H. J. Lee, J. Appl. Phys., 83 5787 (1998).
[6]S. Ruvimov, Z. Liliental-Weber, T. Suski, J. W. Ager III, J. Washburn, J. Krueger, C. Kisielowski, E. R. Weber, H. Amano, and I. Akasaki, Appl. Phys. Lett., 69 990 (1996).
[7]A. Dadgar, F. Schulze, T. Zettler, K. Haberland, R. Clos, G. Straßburger, J. Bläsing, A. Diez, and A. Krost, J. Cryst. Growth, 272 72 (2004).
[8]J. Stőhr, NEXAFS Spectroscopy, Spring, Berlin, (1996).
[9]Mladen Petravic, Prakash N. K. Deenapanray, Victoria A. Coleman, Ki-jeong, Kim Bongsoo Kim and Gang Li, J. Appl. Phy., 95 5487 (2004).
[10]K. Lawniczak-Jablonska, T. Suski, I. Gorczyca, N. E. Christensen, K. E. Attenkofer, R. C. C. Perera, E. M. Gullikson, J. H. Underwood, D. L. Ederer, Z. Liliental Weber, Phys. Rev. B, 61 16623 (2000).
[11]J. W.Chiou, S. Mookerjee, K. V. R. Rao, J. C. Jan, H. M. Tsai, K. Asokan, M.-H. Tsai, Y. K. Chang, Y. Y. Chen, J. F. Lee, C. C. Lee and G. C. Chi, Applied Physical Letters, 81 3389 (2002).
[12]J.H. Kim, P.H. Holloway, J. Vac. Sci. Technol. A, 22 1591 (2004).
[13]S. Strite and H. Morkoc, J. Vac. Sci. Technol. B, 10 1237 (1992).
[14]C.H. Hong, D. Pavlidis, S.W. Brown, S.C. Rand, Appl. Phys. Lett., 77 1705 (1995).
[15]X.L. Sun, H. Yang, L.X. Zheng, D.P. Xu, J.B. Li, Y.T. Wang, G.H. Li, Z.G. Wang, Appl. Phys. Lett., 74 2827 (1999).
[16]H. Yang, O. Brandt, K. Ploog, Phys. Stat. Sol. B, 194 109 (1996).
[17]O. Brandt, H. Yang, H. Kostial, K.H. Ploog, Appl. Phys. Lett. 69 2707 (1996).
[18]M.E. Lin, G. Xue, G.L. Zhou, J.E. Greene, H. Morkoc, Appl. Phys. Lett., 63 932 (1993).
[19]T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287 1019 (2000).
[20]C.G. Zhang_, L.F. Bian, W.D. Chen, C.C. Hsu, J. Crystal Growth, 299 268 (2007).
[21]D. Zhi, U. Tisch, S. H. Zamir, M.Wei, E. Zolotoyabko and J.Salzman, J. Electric Materials, 29 457 (2000).
[22]J.I. Pankove and S. Bloom, RCA Rev., 36 163 (1975).
[23]Z. Sitar, M. J. Paisley, J. Ruan, J. W. Choyke, R. F. Davis, J. Materials Science Letters, 11 261 (1992).
[24]S. Oktyabrsky K. Dovidenko, A. K. Sharma, and J. Narayan V. Joshkin, Appl. Phys. Lett., 74 2465 (1999).
[25]M. Katsikini, J. Arvanitidis, E.C. Paloura, S. Ves, E. Wendler and W. Wesch, Optical Materials, 29 1856 (2007).
[26]L.Trőger, D. Arvanitis, K. Baberschke, H. Michaelis, U.Grimm, E. Zschech, Phys. Rev. B, 46 3283 (1992).
[27]F. d’Acapito, F. Boscherini, S. Mobilio, A. Rizzi, R. Lantier, Phys. Rev. B, 66 205411 (2002).
[28]C. Kisielowski, J. Kru¨ger, S. Ruvimov, T. Suski, J. W. Ager III, E. Jones, Z. Liliental-Weber, M. Rubin, and E. , R. Weber, Phys. Rev. B, 54 24 17 745 (1996).
[29]J. W. Ager III, G. Conti, L. T. Romano and C. Kisielowski, Mater. Res. Soc. Symp. Proc., 482 769 (1998).
[30]Hiramatsu K, Detchprohm T and Akasaki I, Japan. J. Appl. Phys., 32 1528 (1993).
[31]I. H. Lee, I. H. Choi, C. R. Lee, E. J. Shin, D. Kim, S. K. Noh, S. J. Son, K. Y. Lim, and H. J. Lee, J. Appl. Phys., 83 5787 (1998).
[32]T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide, and K. Manabe, J. Appl. Phys., 77 4389 (1995).
[33]Z. Chine, A. Rebey, H. Touati, E. Goovaerts, M. Oueslati, B. El Jani, and S. Laugt, Phys. Stat. Sol. (a), 203 1954 (2006).
[34]L. T. Romano, C. G. Van de Walle, J. W. Ager III, W. Go¨ tz and R. S. Kern, J. Applied Physics, 87 745( 2007).
[35]H. Richter, Z. P. Wang, and L. Ley, Solid State Commun., 39 625 (1981).
[36]I. H. Campbell and P. M. Fauchet, Solid State Commun., 58 739 (1986).
[37]P. Parayanthal and F. H. Pollak, Phys. Rev. Lett., 52 1822 (1984).
[38]Z. C. Feng, Opt. Eng., 41 2022 (2002).
[39]M. Katsikini, E. C. Paloura, T. D. Moustakas, J. Appl. Phys., 83 1437 (1998).
[40]P.W. Kruse In: R.K. Willardson and A.C. Beer, Editors, Semiconductors and Semimetals, 18, Academic Press, New York (1981).
[41]T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks and R.B. James, Mater. Sci. Eng. Rep., 32 103 (2001).
[42]A.S. Alikhanian, V.N. Guskov, A.M. Natarovsky, J.H. Greenberg, M. Fiederle and K.W. Benz, J. Crystal Growth, 240 73 (2002).
[43]B.M. Basol, V.K. Kapur and M.L. Ferris, J. Appl. Phys., 66 1816 (1989).
[44]K.L. Chopra, P.D. Paulson and V. Dutta, Sol. Cells, 12 69(2004).
[45]A. Partovi, A.M. Glass, D.H. Olson, G.J. Zydzik, K.T. Short, R.D. Feldman and R.F. Austin, Appl. Phys. Lett., 59 1832 (1991).
[46]L. Turjanska, P. Höschl, E. Belas, R. Grill, J. Franc and P. Moravec, Nucl. Instr. and Meth. A, 458 90 (2001).
[47]G. Li, X. Zhang, H. Hua and W. Jie, J. Electron. Mater., 34 1215 (2005).
[48]R. Triboulet, in: H.J. Scheel, T. Fukuda (Eds.), Crystal Growth Technology, 373 (2003).
[49]G. Li, W. Jie, H. Hua and Zhi Gu, Prog. Cryst. Growth Charact. 46 85 (2003).
[50]Guoqiang Li, Shao-Ju Shih, Yizhong Huang, Tao Wang and Wanqi Jie, J. Crystal Growth, 311 85 (2008).
[51]T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, and R.B. James, Mater. Sci. Eng. R, 32 103 (2001).
[52]B.A. Brunett, J.M. Van Scyoc, N.R. Hilton, J.C. Lund,R.B. James, and T.E. Schlesinger, IEEE Trans. Nucl. Sci., 46 237 (1999).
[53]B.A. Brunett, J.M. Van Scyoc, T.E. Schlesinger, and R.B. James, Nucl. Instrum. Methods A, 458 76 (2001).
[54]P.N. Luke, M. Amman, and J.S. Lee, IEEE Trans. Nucl. Sci. 51 1199 (2004).
[55]M.C. Duff, D.B. Hunter, A. Burger, M. Groza, V. Buliga, and D.R. Black, Appl. Surf. Sci., 254 2889 (2008).
[56]A. Burger, K. Chattopadhyay, H. Chen, X. Ma, J.-O. Ndap, M. Schieber, T.E. Schlesinger, H.W. Yao, J. Erickson, and R.B. James, Nucl. Instrum. Methods A, 448 586 (2000).
[57]A.E. Bolotnikov, G.S. Camarda, G.A. Carini, Y. Cui, L. Li, and R.B. James, Nucl. Instrum. Methods A, 579 125 (2007).
[58]M. Schieber, R.B. James, H. Hermon, A. Vilensky, I. Baydjanov, M. Goorsky, T. Lam, E. Meerson, H.W. Yao, J. Erickson, E. Cross, A. Burger, J.O. Ndap, G. Wright, and M. Fiederle, J. Cryst. Growth, 231 235 (2001).
[59]C.M. Greaves, B.A. Brunett, J.M. Van Scyoc, T.E. Schlesinger, and R.B. James, Nucl. Instrum. Methods A, 458 96 (2001).
[60]M. Sridharan, Sa.K. Narayandass, D. Mangalaraj, and H. Chul Lee, Vacuum, 70 511 (2003).
[61]T. Wang, W. Jie, J. Zhang, G. Yang, D. Zeng, Y. Xu, S. Ma, H. Hua, and K. He, J. Cryst. Growth, 304 313 (2007).
[62]D. Zeng, W. Jie, G. Zha, T. Wang, and G. Yang, J. Cryst. Growth, 305 50 (2007).
[63]T. Wang, W. Jie, and D. Zeng, Mater. Sci. Eng. A-Struct., 472 227 (2008).
[64]A.S. Pine and G. Dresselhaus, Phys. Rev. B, 4 356 (1971).
[65]P. Rudolph and M. Mu¨ hlberg, Mater. Sci. Eng. B, 16 8 (1993).
[66]M. Newville, P. Livins, Y. Yacoby, J.J. Rehr, and E.A. Stern, Phys. Rev. B, 47 14126 (1993).
[67]J. Mustre de Leon, J.J. Rehr, S.I. Zabinsky, and R.C. Albers, Phys. Rev. B, 44 4146 (1991).
[68]J.J. Rehr and R.C. Albers, Phys. Rev. B, 41 8139 (1990).
[69]J.J. Rehr, J. Mustre de Leon, S.I. Zabinsky, and R.C. Albers, J. Am. Chem. Soc., 113 5135 (1991).
[70]J.J. Rehr, S.I. Zabinsky, and R.C. Albers, Phys. Rev. Lett., 69 3397 (1992).
[71]E.A. Stern, M. Newville, B. Ravel, Y. Yacoby, and D. Haskel, Physica B, 117, 208 (1995).
[72]D. N. Talwar, Z. C. Feng, P, Becla, Phys. Rev. B, 48 17064 (1993).
[73]N. Vagelatos, D. Wehe and J. S. King, J. Chem. Phys., 60 3613 (1974).
[74]J. M. Rowe, R. M. Nicklow, D. L. Price and K. Zanio, Phys. Rev. B., 10 671 (1974)
[75]H. Narada and S.Narita, J. Phys. Soc. Jpn., 30 1628 (1970).
[76]L. K. Vodop’yanov, E. A. Vinogradov, A. M. Blinov and V. A. Rukavishnikov, Fiz. Tverd. Tela (Leningrad), 14 268 (1972).
[77]E. A. Vinogradov and L. K. Vodop’yanov, Fiz. Tverd. Tela (Leningrad), 17 3161 (1975).
[78]Samantha A. Hawkins, Eliel Villa-Aleman, Martine C. Duff, Doug B. Hunter, Arnold Burger, Michael Groza, Vladimir Buliga and David R. Black, J. Electron. Mater., 37 1438 (2008).
[79]A.S. Pine and G. Dresselhaus, Phys. Rev. B, 4 356 (1971).
[80]Lucile C. Teague, Samantha A. Hawkins, Martine C. Duff, Michael Groza, Vladimir Buliga and Arnold Burger, J. Electron. Mater. (2009).
[81]V. Koteski, H. Haas, E. Holub-Krappe, N. Ivanovic and H. -E. Mahnke, Journal of alloys and compounds, 26 138 (2004).
[82]Motta, N., Balzarotti, A., Letardi, P., Kisiel, A., Czyzyk, M. T., Zimnal-Starnawska, M. and Podgorny, M., J. Crystal Growth 72 205 (1985).
[83]Sadao Adachi, “Optical Constants of Crystalline and Amorphous Semiconductors” (1999).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45639-
dc.description.abstract同步加速器光源是二十一世紀尖端科學研究不可或缺的實驗利器,已廣泛應用在材料、生物、醫藥、物理、化學、化工、地質、考古、環保、能源、電子、微機械、奈米元件等基礎與應用科學研究,因而被稱為現代的「科學神燈」。
本文主要討論同步輻射技術在半導體材料上的研究,共分五個章節,第一章為同步輻射的介紹,包含何謂同步輻射、同步輻射的歷史、產生源、光源的特性、如何產生同步輻射? 以及同步輻射的應用。第二章為本文中使用到的實驗設備以及實驗原理的介紹,包含拉曼、X光繞射、X光吸收光譜。第三章為X光吸收光譜數據處理的詳細過程。
第四章以變角度的同步輻射的X光吸收光譜為主,利用區域結構以及鍵長的觀點去計算出半導體材料-氮化鎵薄膜生長在不同基板上時所產生的應力,接著再利用拉曼光譜和X光繞射光譜去做比對。經由X光吸收光譜在原子短程結構及電子組態上之優點,與傳統XRD長程有序分析等結果相互配合,可使我們更加了解奈米材料之結構特性。而第五章主要是研究拉曼雷射光如何對半導體材料-碲化鎘鋅表面造成損壞,因為在拉曼光譜上發現碲化鎘鋅會有大量金屬碲聚集在表面上,這些金屬碲有可能會降低其性能,因此找到這些金屬碲聚集的原因為本章主要的目的。
zh_TW
dc.description.abstractDuring the past decade, synchrotron light sources have become indispensable tools for advanced scientific research. Synchrotron light is used widely in basic and applied research throughout the fields of materials science, biology, medicine, physics, chemistry, chemical engineering, geology, archeology, environmental science, energy, electronics, micro-mechanical engineering, and nanotechnology. For this reason synchrotron light sources have been coined 'magic lamps of science'.
This thesis will focus on synchrotron radiation technology studies of semiconductors and heterostructures. It consists of five chapters: in chapter one, we introduce the synchrotron radiation, including the explanation, history, sources, properties, production and applications of synchrotron radiation. In chapter two, the experimental instruments and the theoretical backgrounds have been introduced, including Raman scattering, X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). The data treatment of X-ray absorption spectroscopy will be introduced in chapter three.
MOCVD grown Si-doped GaN and MBE grown undoped GaN have been studied by combined Raman scattering, X-ray absorption fine structure and XRD techniques in chapter four. Polarization-dependent X-ray absorption fine structure has been employed to study the bond length around the Ga atom and the strain in the GaN films can be further obtained. In-plane strain can also be measured with a lateral spatial resolution of 1 mm with micro-Raman spectroscopy using shifts of the E2 phonon. Therefore, by combining Raman measurement and polarization-dependent extended X-ray absorption fine structure (EXAFS) analysis, both techniques can provide complementary information to reveal the residual stress in GaN films grown by different growth condition. In chapter five, Raman spectroscopy was also used to induce areas of Te secondary phases on the surfaces of the CZT crystals. These secondary phases may affect spectrometer performance. Therefore, to discuss the reasons that cause the secondary phase happen is the main purpose in this chapter.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:32:01Z (GMT). No. of bitstreams: 1
ntu-98-R96941096-1.pdf: 3237872 bytes, checksum: c3551ca446d029b19368cd907eb9b4e9 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書………………………………………………………i
誌謝……………………………………………………………………ii
中文摘要………………………………………………………………iii
英文摘要………………………………………………………………iv
Contents…………………………………………………………………I
List of Figures…………………………………………………………V
List of Tables……………………………………………………XIV
Chapter 1 Introduction………………………………………………1
1.1 What is Synchrotron Radiation?………………………………1
1.2 History of X-ray Sources………………………………………2
1.4 The properties of Synchrotron Radiation………………4
1.3 Generations of Synchrotron Radiation Sources……………5
1.5 How is Synchrotron Light Produced?…………………………6
Reference………………………………………………………………8
Chapter 2 X-ray Absorption Fine Structure (XAFS)…………10
2.1 X-ray absorption spectroscopy: principle and analysis………………………………………………………………10
2.2 X-ray Absorption Near Edge Structure (XANES)…………16
2.3 Extended X-ray Absorption Fine Structure (EXAFS)……18
2.4 Polarized-dependence X-ray absorption fine structure………………………………………………………………22
Reference………………………………………………………………23
Chapter 3 Data Treatment…………………………………………25
3.1 Conversion of experimental variables……………………25
3.2 Background removal……………………………………………26
3.3 Normalization and mu0 correction…………………………27
3.5 Weighting scheme………………………………………………29
3.6 Deglitching………………………………………………………30
3.7 Fourier transformation………………………………………30
3.8 Fourier filtering (FF) and curve fitting (CF)…………32
Reference ………………………………………………………………33
Chapter 4 X-ray absorption and Raman study of GaN films grown on different substrates by different techniques……………………………………………………………34
4.1Introduction………………………………………………………34
4.2 Experiment………………………………………………………36
4.3 Result and discussion…………………………………………38
4.3.1 Near edge X-ray absorption spectroscopy (NEXAFS)…38
4.3.1.1 Polarization-dependent NEXAFS…………………………38
4.3.1.2 Polarization-dependent NEXAFS for wurzite GaN………………………………………………………………………40
4.3.1.3 Polarization-dependent NEXAFS for cubic GaN………………………………………………………………………44
4.3.1.4 Polarization-dependent NEXAFS for doped and undoped GaN ………………………………………………………………………49
4.3.2 Polarization dependent Extended X-ray absorption fine structure (EXAFS)……………………………………………51
4.3.3 Strain…………………………………………………………58
4.3.3.1 Strain determination from polarized-dependent EXAFS……………………………………………………………………58
4.3.3.2 Strain determination from Raman measurements……61
4.3.3.3 Strain determination from XRD measurements………65
4.3.4 Raman line shape analysis based on the spatial correlation model……………………………………………………68
4.4 Conclusion………………………………………………………70
Reference………………………………………………………………71
Chapter 5 X-ray Absorption and Raman Study on CdZnTe Ternary Alloys………………………………………………………76
5.1 Introduction……………………………………………………76
5.2 Experiment………………………………………………………78
5.3 Result and discussion…………………………………………79
5.3.1 Extended X-ray absorption fine structure (EXAFS)…………………………………………………………………………79
5.3.2 Raman-scattering……………………………………………87
5.3.3 Tender X-ray absorption…………………………………98
5.4 Conclusion………………………………………………………101
Reference ……………………………………………………………102
Appendix………………………………………………………………107
A. Raman scattering………………………………………………107
B. Raman fitting……………………………………………………110
C. NEXAFS ……………………………………………………………112
dc.language.isoen
dc.subject碲化鎘鋅zh_TW
dc.subject氮化鎵zh_TW
dc.subject拉曼光譜zh_TW
dc.subjectX光吸收光譜zh_TW
dc.subjectX-ray absorption spectroscopyen
dc.subjectRaman spectroscopyen
dc.subjectGaNen
dc.subjectCdZnTeen
dc.title同步輻射X光吸收光譜對氮化鎵及碲化鎘鋅的研究和相關光學性質分析zh_TW
dc.titleSynchrotron Radiation X-ray Absorption Study and Related Optical Characterization on GaN and CdZnTeen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃建璋(Jian-Jang Huang),吳育任(Yuh-Renn Wu)
dc.subject.keywordX光吸收光譜,拉曼光譜,氮化鎵,碲化鎘鋅,zh_TW
dc.subject.keywordX-ray absorption spectroscopy,Raman spectroscopy,GaN,CdZnTe,en
dc.relation.page114
dc.rights.note有償授權
dc.date.accepted2009-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
Appears in Collections:光電工程學研究所

Files in This Item:
File SizeFormat 
ntu-98-1.pdf
  Restricted Access
3.16 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved