Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45634
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李允中
dc.contributor.authorSheng-Jang Wangen
dc.contributor.author王聖讓zh_TW
dc.date.accessioned2021-06-15T04:31:43Z-
dc.date.available2011-08-21
dc.date.copyright2009-08-21
dc.date.issued2009
dc.date.submitted2009-08-19
dc.identifier.citation1. 林慧玲。1998。番石榴果實後熟生理之研究。博士論文。台北:台灣大學園藝學研究所。
2. 唐翊凱。2007。時頻域方法應用於洋香瓜敲擊響應之分析。碩士論文。台北:台灣大學生物產業機電工程學系。
3. 黃得時。1998。梨子的振動頻譜與物性之研究。碩士論文。台中:中興大學農業機械工程學系。
4. 郭婉秋。2005。珍珠拔及水晶拔番石榴果實採收後生理之研究。碩士論文。屏東:屏東科技大學農園生產系。
5. 程安邦。1999。自由邊界條件下洋香瓜振動模式之有限元素分系。出自” 中華民國第二十三屆全國力學會議專集”。32-38。台北:中華民國力學學會。
6. 程安邦、林建志。2006。波以松比對預測蔬果彈性模數影響之探討。出自” 2006生物機電工程研討會論文集”。487-494。台北:台灣生物機電學會。
7. 葉柏涼。2006。敲擊回音法之時間:頻率域分析與影像法。博士論文。台北:台灣大學應用力學硏究所。
8. Abbott, J. A., G. S. Bachman, and N. F. Childers. 1968. Sonic Techniques for Measuring Texture of Fruits and Vegetables. Food Technology 22(5): 101-112.
9. Abbott, J. A., D. R. Massie, and B. L. Upchurch. 1995. Nondestructive Sonic Firmness Measurement of Apples. Transactions of the ASAE 38(5): 1467-1476.
10. Akamine, E. K., and T. Goo. 1979. Respiration Ethylene Production in Fruits of Species and Cultivars of Psidium and Species of Eugenia. J. Amer. Soc. Hort. Sci. 104: 632-635.
11. Armstrong, P., H. R. Zapp, and G. K. Brown. 1990. Impulsive Excitation of Acoustic Vibrations in Apples for Firmness Determination. Transactions of the ASAE 33(4): 1353-1359.
12. Armstrong, P. R., M. L. Stone, and G. H. Brusewitz. 1997. Nondestructive Acoustic and Compression Measurements of Watermelon for Internal Damage Detection. Applied Engineer in Agriculture 13(5): 641-645.
13. Armstrong, P. R., M. L. Stone, and G. H. Brusewitz. 1997. Peach Firmness Determination Using Two Different Nondestructive Vibrational Sensing Instruments. Transactions of the ASAE 40(3): 699-703.
14. ASABE STANDARDS 386.4. 2009. Compression Test of Food Materials of Convex Shape. 679-686.
15. Belie, N. D., S. Schotte, P. Coucke, and J. D. Baerdemaeker. 2000a. Development of an Automated Monitoring Device to Quantify Changes of Firmness of Apples during Storage. Postharvest Biology and Technology 18(1): 1-8.
16. Belie, N. D., S. Schotte, J. Lammertyn, B. Nicolai, and J. D. Baerdemaeker. 2000b. Firmness Changes of Pear Fruit before and after Harvest with the Acoustic Impulse Response Technique. Journal of Agricultural Engineering Research 77(2):183-191.
17. Biale, J. B., and R. E. Young. 1981. Respiration and Ripening in Fruits-retrospect and Prospect. In “Recent Advances in Biochemistry of Fruits and Vegetables”, ed. J. Friend and M. J. C. Rhodes, 1-40. New York: Academic Press.
18. Chen, H., and J. D. Baerdemaeker. 1993. Effect of Apple Shape on Acoustic Measurements of Firmness. Journal of agricultural engineering research 56: 253-266.
19. Cherng, A. P, and F. Ouyang. 2003. A Firmness Index for Fruits of Ellipsoidal Shape. Biosystems Engineering 86(1): 35-44.
20. Cherng, A. P, and F. Ouyang. 2005. An Estimation of Firmness for Solid Ellipsoidal Fruits. Biosystems Engineering 91(2): 257-259.
21. COMSOL. 2009. Structural Mechanics Module User’s Guide. Ver. 3.5a. L.A.: COMSOL, Inc.
22. Cooke, J. R., and R. H. Rand. 1973. A Mathematical Study of Resonance in Intact Fruits and Vegetables Using a 3-Media Elastic Sphere Model. J. agric. Engng Res. 18: 141-157.
23. Dewulf, W., P. Jancsok, B. Nicolai, G. D. Roeck, and D. Briassoulis. 1999. Determining the Firmness of a Pear using Finite Element Modal Analysis. J. agric. Engng Res. 74: 217-224.
24. Dintwa, E., M. V. Zeebroeck, H. Ramon and E. Tijskens. 2008. Finite Element Analysis of the Dynamic Collision of Apple Fruit. Postharvest Biology and Technology 49: 260-276.
25. Duprat, F., M. Grotte, E. Pietri and D. Loonis. 1997. The Acoustic Impulse Response Method for Measuring the Overall Firmness of Fruit. J. agric. Engng Res. 66: 251-259.
26. Felföldi, J. and A. Fekete. 2003. Detection of Small Scale Mechanical Changes by Acoustic Measuring system. ASAE Paper No. 036097. St. Joseph, MI: ASAE.
27. Galili, N., I. Shmulevich, and N. Benichou. 1998. Acoustic Testing of Avocado for Fruit Ripeness Evaluation. Transactions of the ASAE 41(2): 399-407.
28. Huarng, L., P. Chen and S. Upadhyaya. 1993. Determination of Acoustic Vibration Modes in Apples. Transactions of the ASAE 36(5): 1423-1429.
29. Iglesias, B. D., C. Valero, F. J. Ramos, and M. R. Altisent. 2006. Monitoring of Firmness Evolution of Peaches during Storage by Combining Acoustic and Impact Methods. Journal of Food Engineering. Journal of Food Engineering 77(4): 926-935.
30. Iglesias, B. D., M. R. Altisent, and B. Orihuel. 2003. Acoustic Impulse Response for Detecting Hollow Heart in Seedless Watermelon. International Society for Horticultural Science 599: 249-256.
31. Jagannath, J. H., D. K. D. Gupta, A. S. Bawa, R. Sebastin, and B. Vishnu. 2005. Assessment of Ripeness/Damage in Banana (Musa Paradisiacal) by Acoustic Resonance Spectroscopy. Journal of Food Quality 28: 267–278.
32. Jamal, N., Y. Ying, J. Wang, X. Rao, and C. Yu. 2005. Firmness Evaluation of Melon Using Its Vibration Characteristic and Finite Element Analysis. J. Zhejiang Univ. SCI. 6B (6): 483-490.
33. Jeffiries, P. J., J. C. Dodd, M. J. Jeger, and R. A. Plumbley. 1990. The Biology and Control of Collectotrichm Species on Tropical Fruit Crops. Plant Physiol 39: 343-366.
34. Ketelaere, B. D. and J. D. Baerdemaeker. 2001. Advances in Spectral Analysis of Vibrations for Non-destructive Determination of Tomato Firmness. Journal of Agricultural Engineering Research 78(2): 177-185.
35. McGlasson, W. B., K. J. Scott, and D. B. Mendoza. 1979. The Refrigerated Storage of Tropical and Sub-tropical Produce. Intl. J. Refrig. 2: 199-206.
36. Mohsenin, N. N. 1980. Physical Properties of Plant and Animal Material. 3rd ed. New York: Gordon and Breach, Science Publishers.
37. Morris, L. L. 1982. Chilling Injury of Horticultural Crop: An Overview. HortScience 17: 161-162.
38. Muramatsu, N., N. Sakurai, R. Yamamoto, D. J. Nevins, T. Takahara, and T. Ogata. 1997. Comparison of a Non-destructive Acoustic Method with an Intrusive Method for Firmness Measurement of Kiwifruit. Postharvest Biology and Technology 12(3): 221-228.
39. Nourain, J., Y. B. Ying, J. P. Wang, X. Q. Rao and C. G. Yu. 2005. Firmness Evaluation of Melon Using Its Vibration Characteristic and Finite Element Analysis. J Zhejiang Univ SCI. 6B (6): 483-490.
40. Ozer, N., B. A. Engel and J. E. Simon. 1998. A Multiple Impact Approach for Non-destructive Measurement of Fruit Firmness and Maturity. Transactions of the ASAE 41(3): 871-876.
41. Pantastico, E. R., T. K. Chattopadhyay, and H. Subramanyam. 1975. Storage and Commercial Storage Operations. In “Post-harvest Physiology, Handling and Utilization of Tropical and Sub-tropical Fruits and Vegetables”, ed. E. R. Pantastico, 314-340. Westport, CT: AVI Publ. Co.
42. Peleg, K. 1993. Comparison of Non-destructive and Destructive Measurement of Apple Firmness. Journal of Agricultural Engineering Research 55: 227-238.
43. Peleg, K. 1999. Development of a Commercial Fruit Firmness Sorter. Journal of Agricultural Engineering Research 72(3): 231-238.
44. Rao, M. A., S. S. H. Rizvi and A. Datta. 2005. Engineering Properties of Foods. 3rd ed. Boca Raton: Taylor & Francis Group, LLC.
45. Stone, M. L., P. R. Armstrong, and X. Zhang. 1996. Watermelon Maturity Determination in the Field Using Acoustic Impulse Impedance Techniques. Transactions of the ASAE 39(6): 2325-2330.
46. Sugiyama, J., K. Otobe and S. Hayashi. 1994. Firmness Measurement of Muskmelons by Acoustic Impulse Transmission. Transactions of the ASAE 37(4): 1235-1241.
47. Sugiyama, J., T. Katsural, and J. Hong. 1998. Melon Ripeness Monitoring by a Portable Firmness Tester. Transactions of the ASAE 41(1): 121-127.
48. Tucker, G. A. 1993. Introduction. In ”Biochemistry of Fruit Ripening”, ed. G. B. Seymour, J. E. Taylor, and G. A. Tucker, 1-52. New York: Chapman and Hall.
49. Wang, J., A. H., Gomez and A. G. Pereira. 2006. Acoustic Impulse Response for Firmness of Mandarin during Storage. Journal of Food Quality 29: 392-404.
50. Wils, R. B. H., E. E. Mulholland, and B. I. Brown. 1983. Storage of Two New Cultivars of Guava Fruit for Processing. Trop Agric. 60: 175-178.
51. Yamamoto, H., M. Iwamoto, and S. Haginuma. 1980. Acoustic Impulse Response Method for Measuring Natural Frequency of Intact Fruits and Preliminary Applications to Internal Quality Evaluation of Apples and Watermelons. Journal of Texture studies 11: 117-136.
52. Yamamoto, H., M. Iwamoto, and S. Haginuma. 1981. Nondestructive Acoustic Impulse Response Method for Measuring Internal Quality of Apples and Watermelons. Journal of Japan Society of Horticultural Science. 50(2): 247-261.
53. Yen, M. H. and Y. N. Wan. 2002. Digital Signal Analysis of Guava Impact Inspection. ASAE Paper No. 026070. St. Joseph, MI: ASAE.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45634-
dc.description.abstract水果經採收後在室溫中容易造成軟化喪失商業價值,若要長期存放勢必需要儲藏在較低溫的環境下,以保持其物理性質,利用彈性性質建立水果品質非破壞檢測指標是工程重要的研究課題。本論文探討珍珠拔品種番石榴在儲藏時彈性性質的改變,以ASABE標準平板壓縮試驗及敲擊試驗,檢測在5°C、10°C、15°C與室溫四種溫度下,儲藏期間果實的敲擊振動共振頻率、振動阻尼比和彈性模數的變化,並以COMSOL軟體模擬珍珠拔共振時的振形與共振頻率,再利用巢狀試驗設計來分析儲藏溫度與時間對以上彈性性質的影響。軟體模擬則先將由雷射掃描器掃出的果實外型匯入程式中,再以敲擊試驗測得的彈性模數作為其材料特性,利用COMSOL的三維結構模組計算樣本的振動特徵頻率,並由文獻中彈性球體的振形來判斷共振頻率。模擬的結果除了可以得到與敲擊試驗所得實驗值相近的S20共振頻率,還能找出實驗不易觀察到的S30與 S40共振頻率。實驗結果顯示珍珠拔敲擊振動的共振頻率與平板壓縮及敲擊兩種方法所測得的彈性模數皆隨著儲藏天數的增加而降低,且三者的趨勢相近。敲擊試驗所計算出的振動阻尼比則會隨著儲藏時間上升,並且上升的速率隨儲藏溫度降低而變為緩慢。將此振動阻尼比以巢狀試驗設計分析顯示儲藏溫度及時間的影響皆為顯著,相較於敲擊振動的共振頻率,振動阻尼比的變化較能不受樣本個體差異的影響,更適合做為珍珠拔物理性質的非破壞檢測的指標。zh_TW
dc.description.abstractSince harvested fruit easily softens and loses its market value at room temperature, a low-temperature environment is required to preserve the fruit’s firmness if a longer shelf life is desired. Thus using elastic property to establish a nondestructive quality evaluation index is one of the important research issues of biological engineering. This study aims at investigating the variations of the elastic properties of stored “Jen-Ju Bar” a most popular variety of guava in Taiwan. The ASABE standard parallel plate compression test and the impulse response test were used to measure the variation of impulse vibrating resonant frequencies, vibrating damping ratios and elastic moduli of the fruit stored at 5°C, 10°C, 15°C and room temperature. Besides, COMSOL Multiphysics was used to simulate the fruit’s vibration modes and resonant frequencies during resonating. Nested experimental design was adopted to analyze the effects of storage duration and temperature on the above elastic properties. Model geometries of fruits for finite elements simulation were constructed using surface topology scanning. Then, the elastic moduli measured in the impulse response test were taken for the material properties. The 3-D structural mode was then used to calculate the samples’ vibrating eigenfrequencies, and the resonant frequencies were determined based on the vibration modes of elastic sphere in literature. The results of the simulation showed that the resonant frequencies of S20 mode resembled the values measured by impulse response test; in addition, the resonant frequencies of S30 mode and S40 mode, rarely observed in experiments, were found. The results of the experiments showed that the impulse vibrating resonant frequencies and the elastic moduli measured by parallel plate compression test and the impulse response test decreased as the storage duration lengthened, and these three showed a similar trend. Vibrating damping ratios measured by impulse response test increased as the storage duration lengthened, with a slower rate of rising at a low storage temperature than at a high storage temperature. The nested experimental design analyses of vibrating damping ratios showed significant effects of both storage temperature and duration. Compared with impulse vibrating resonant frequency, the variation of vibrating damping ratio was less affected by individual sample differences, thus more appropriate for a nondestructive index to evaluate the physical properties of “Jen-Ju Bar”.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:31:43Z (GMT). No. of bitstreams: 1
ntu-98-R96631011-1.pdf: 2237485 bytes, checksum: 6b98bf0dd15426f5346473f9fa79d1d7 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents致謝 i
摘要 ii
ABSTRACT iii
目錄 v
圖目錄 viii
表目錄 xi
第一章 前言與研究目的 1
1.1前言 1
1.2 研究目的 2
第二章 文獻探討 3
2.1 珍珠拔種番石榴 3
2.1.1 珍珠拔果實的呼吸形式 3
2.1.2 珍珠拔果實的後熟行為及組成分變化 3
2.1.3 珍珠拔果實的低溫儲藏 4
2.2 振動特性應用於農產品檢測 5
2.2.1 連續振動檢測 5
2.2.2 敲擊檢測的頻域主頻率分析 5
2.2.3 敲擊檢測的頻域主頻帶分析 7
2.2.4 敲擊檢測的阻尼比分析 8
2.3 有限元素分析應用於水果品質檢測 9
2.4 訊號處理 10
第三章 理論分析 12
3.1 頻譜分析原理 12
3.2 頻譜圖轉換 13
3.3 彈性球體振動理論 13
3.3.1 均質彈性球體的彈性模數 15
3.3.2 均質彈性球體的振形 16
3.4 振動阻尼比(Damping ratio) 19
第四章 實驗設備與方法 21
4.1 實驗流程 22
4.2 珍珠拔的物理性質 23
4.2.1 平均重量量測法 23
4.2.2 體積量測方法 23
4.3 低溫儲藏設備 23
4.4 敲擊實驗 24
4.4.1 振動訊號的感測 25
4.4.2 訊號擷取與分析 27
4.5 平板壓縮試驗 30
4.6 模擬方法 33
4.6.1 模擬軟體 33
4.6.2 三維雷射掃描器 34
4.6.3 模擬設定 35
第五章 結果與討論 37
5.1 平板壓縮試驗結果 37
5.2 敲擊振動試驗結果 40
5.2.1 振動的共振頻率與阻尼比 40
5.2.2 計算彈性模數 46
5.3 珍珠拔果實大小不同所造成的影響 49
5.4 平板壓縮試驗與敲擊試驗測得之彈性模數關係 51
5.5 軟體模擬結果 55
5.6 巢狀試驗設計分析結果 60
5.7 珍珠拔的劣化情形 62
第六章 結論 63
參考文獻 64
附錄 69
dc.language.isozh-TW
dc.subject阻尼比zh_TW
dc.subject低溫儲藏zh_TW
dc.subject共振頻率zh_TW
dc.subject彈性模數zh_TW
dc.subjectResonant frequencyen
dc.subjectLow-temperature storageen
dc.subjectElastic modulusen
dc.subjectDamping ratioen
dc.title番石榴儲藏對彈性性質影響之研究zh_TW
dc.titleStudies on Storage Effect of Elastic Properties of Guava
(Psidium guajava L.) Fruits
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee盧福明,程安邦
dc.subject.keyword低溫儲藏,共振頻率,阻尼比,彈性模數,zh_TW
dc.subject.keywordLow-temperature storage,,Resonant frequency,Damping ratio,Elastic modulus,en
dc.relation.page84
dc.rights.note有償授權
dc.date.accepted2009-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved