Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45628
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何志浩(Jr-Hau He)
dc.contributor.authorTz-Chen Keien
dc.contributor.author柯志堅zh_TW
dc.date.accessioned2021-06-15T04:31:20Z-
dc.date.available2014-08-21
dc.date.copyright2009-08-21
dc.date.issued2009
dc.date.submitted2009-08-19
dc.identifier.citation[1] X. Duan and C. M. Lieber, Adv. Mater., (2000), 12, 298.
[2] Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, and C. M. Lieber, Appl. Phys. Lett., (2001), 78, 2214
[3] A. M. Morales and C. M. Lieber, Science, (1998), 279, 208.
[4] Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, Nano. Lett., (2002), 2, 101.
[5] Z. Zhong, F. Qian, D.Wang, and C. M. Lieber, Nano. Lett., (2003), 3, 343.
[6] C. J. Barrelet, Y. Wu, D. C. Bell, and C. M. Lieber, J. Amer.Chem. Soc., (2003), 125, 11489.
[7] M. S. Gudiksen, J. Wang, and C. M. Lieber, J. Phys. Chem., (2002), 106, 4036.
[8] X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature, (2001), 409, 66.
[9] J. Hahm and C. M. Lieber, Nano. Lett., (2004), 4, 51.
[10] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science, (2001), 293, 1289.
[11] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, Nano. Lett., (2003), 3, 149.
[12] Y. Cui and C. M. Lieber, Science, (2001), 291, 851.
[13] Z. Zhong, D. Wang, Y. Cui, M. W. Bockrath, and C. M. Lieber, Science, (2003), 302, 1377.
[14] J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, Science, (2001), 293, 1455
[15] X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Nature, (2003), 421, 241.
[16] X. Duan, Y. Huang, and C. M. Lieber, Nano. Lett., (2002), 2, 487.
[17] Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, Science, (2001), 291, 630.
[18] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, Science, (2001), 294, 1313.
[19] B. Salem, F. Dhalluin, H. Abed, T. Baron, P. Gentile, N. Pauc, P. Ferret, Solid State Commun., (2009), 149, 799.
[20] L. Tsakalakos, J. Balch, J. Fronheiser, and B. A. Korevaar, Appl. Phys. Lett., (2007), 91, 233117.
[21] W. W. Chen, H. Yao, C. H. Tzang, J. J. Zhu, M. S. Yang, and S. T. Lee, Appl. Phys. Lett., (2006), 88, 213104
[22] G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, C. M. Lieber, Nature Biotech., (2005), 23, 1294.
[23] C. Y. Nam, J. Y. Kim, J. E. Fischer, Appl. Phys. Lett., (2005), 86, 193112.
[24] G. D. Marzi, D. Iacopino, A. J. Quinn, G. Redmond, J. Appl. Phys., (2004), 96, 3458.
[25] V. Gopal, E. A. Stach, V. R. Radmilovic, Appl. Phys. Lett., (2004), 85, 49.
[26] S. B. Cronin, Y.-M. Lin, O. Rabin, M. R. Black, J. Y. Ying, M. S. Dresselhaus, P. L. Gai, J.-P. Minet, J.-P. Issi, Nanotechnology, (2002), 13, 653.
[27] J.-F. Lin, J. P. Bird, L. Rotkina, P. A. Bennett, Appl. Phys. Lett., (2003), 82, 802.
[28] C. A. Volkert, A. M. Minor, MRS Bull., (2007), 32, 389.
[29] A. A. Tseng, Small, (2005), 1, 924.
[30] K. Q. Peng, H. Fang, J. J. Hu, Y. Wu, J. Zhu, Y. J. Yan, and S. T. Lee, Chem. Eur. J., (2006), 12, 7942.
[31] K. Q. Peng, J. J. Hu, Y.J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, Adv. Funct. Mater., (2006), 16, 387.
[32] K. Q. Peng, Y. J. Yan, S. P.Gao, and J. Zhu, Adv. Mater., (2002), 14, 1164.
[33] K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, Adv. Funct. Mater., (2003) 13, 127.
29

2.5 Reference
[1] B. Salem, F. Dhalluin, H. Abed, T. Baron, P. Gentile, N. Pauc, P. Ferret, Solid
State Commun., (2009), 149, 799.
[2] L. Tsakalakos, J. Balch, J. Fronheiser, and B. A. Korevaar, Appl. Phys. Lett.,
(2007), 91, 233117.
[3] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science, (2001), 293, 1289
[4] W. W. Chen, H. Yao, C. H. Tzang, J. J. Zhu, M. S. Yang, and S. T. Lee, Appl.
Phys. Lett., (2006), 88, 213104.
[5] G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, C. M. Lieber, Nature Biotech., (2005),
23, 1294.
[6] C. Y. Nam, J. Y. Kim, J. E. Fischer, Appl. Phys. Lett., (2005), 86, 193112.
[7] C. A. Volkert, A. M. Minor, MRS Bull., (2007), 32, 389.
[8] G. D. Marzi, D. Iacopino, A. J. Quinn, G. Redmond, J. Appl. Phys., (2004), 96,
3458.
[9] V. Gopal, E. A. Stach, V. R. Radmilovic, Appl. Phys. Lett., (2004), 85, 49.
[10] S. B. Cronin, Y.-M. Lin, O. Rabin, M. R. Black, J. Y. Ying, M. S. Dresselhaus, P.
L. Gai, J.-P. Minet, J.-P. Issi, Nanotechnology, (2002), 13, 653.
[11] J.-F. Lin, J. P. Bird, L. Rotkina, P. A. Bennett, Appl. Phys. Lett., (2003), 82, 802.
[12] K. Q. Peng, H. Fang, J. J. Hu, Y. Wu, J. Zhu, Y. J. Yan, and S. T. Lee, 2006
30

Chem. Eur. J., (2006), 12, 7942.
[13] K. Q. Peng, J. J. Hu, Y.J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu,
Adv. Funct. Mater., (2006), 16, 387.
[14] K. Q. Peng, Y. J. Yan, S. P.Gao, and J. Zhu, Adv. Mater.(2002), 14, 1164
[15] K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, Adv. Funct. Mater., (2003), 13,
127.
[16] F. Hernandez-Ramirez et al., Nanotechnology, (2006), 17, 5577.
[17] Emmanuel Dubois and Guilhem Larrieu, J. App.Phys., (2004), 96, 729.
[18] E. Stern, G. Cheng, M. P. Young, and M. A. Reed, Appl. Phys. Let., (2006), 88,
053106.
[19] T. V. Blank^ and Yu. A. Gol’dberg, Semiconductors, (2007), 41, 1263.
[20] H. B. Michaelson, in CRC Handbook of Chemistry and Physics, 75th ed., edited
by D. R. Lide (CRC, Boca Raton, FL, 1994-1995), pp. 12–113
[21] J. C. Riviere, Proc. Phys. Soc. (London) B, (1957), 70, 676.
[22] W. Bock, H. Gnaser, and H. Oechsner, 1993 Surf. Sci., (1993), 282, 333.
[23] R. Menzel, K. Gärtner, W. Wesch, and H. Hobert, J. Appl. Phys., (2000), 88,
5658.
[24] D. Vetterli, M. Döbeli, R. Mühle, P. W. Nebiker, and C. R. Musil,
Microelectronic Engineering, (1995), 27, 339.

31

[25] C. R. Wronski, D. E. Carison, and R. E. Daniel, Appl. Phys. Lett., (1976), 29,
602.
[26] E.H. Rhoderick, Metal-semiconductor contacts, OXFORD, 1988.
[27] S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1981.
[28] R. J. Archer and M. M. Atalla, Am. Acad. Sci. N. Y., (1964), 101, 697.
[29] A. Thanailakis and A. Rasul, J. Phys. C:Solid-St. Phys, (1976). 9, 337.
[30] J. M. Shannon, Appl. Phys. Lett., (1974), 24, 369.
[31] J. M. Shannon, Appl. Phys. Lett., (1974), 25, 75.
[32] J. M. Andrews, R. M. Ryder, and S. M. Sze, US. Patent No. 3964084, (1976).
[33] W. Mo¨nch, Semiconductor Surfaces and Interfaces, second ed., Springer, Berlin,
1995.
[34] C. Longeaud and G. Fournet, Phy. Rev. B, (1988), 15, 7493.
[35] M. H. Cohen, J. Non-Cryst. Solids, (1970), 4, 39.
[36] S. M. Sze, Semiconductor devices, physics and technology, Wiley, 2002.
[37] Sandeep Kumar, Y.S. Katharria, Sugam Kumar, D. Kanjilal, Solid-State
Electronics, (2006), 50, 1835.
[38] M. Levalois, P. Bogdanski and M. Toulemonde, Nucl. Instrum. Methods Phys.
Res. B, (1992), 63, 14.
[39] B.G. Svensson, C. Jagadish, A. Hall, J. Lalita, Nucl. Instrum. Methods Phys. Res.

32

B, (1995), 106, 183.
[40] S. Coffa, V. Privitera, F. Priolo, S. Libertino, and G. Mannino, J Appl. Phys.,
(1997), 81, 1639.
[41] C. Y. Nam, D. Tham, and J. E. Fischer, Nano. Lett., (2005), 5, 2029.
50

3.5 Reference
[1] B. Salem, F. Dhalluin, H. Abed, T. Baron, P. Gentile, N. Pauc, P. Ferret, Solid
State Commun., (2009), 149, 799.
[2] L. Tsakalakos, J. Balch, J. Fronheiser, and B. A. Korevaar, Appl. Phys. Lett.,
(2007), 91, 233117.
[3] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science, (2001), 293, 1289.
[4] W. W. Chen, H. Yao, C. H. Tzang, J. J. Zhu, M. S. Yang, and S. T. Lee, Appl.
Phys. Lett., (2006), 88, 213104.
[5] G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, C. M. Lieber, Nature Biotech., (2005),
23, 1294.
[6] Hideo Kohno, Isamu Kikuo, and Kenichi, J. Electron Microsc., (2005), 54,
i15-i19.
[7] C. A. Volkert, A. M. Minor, MRS Bull., (2007), 32, 389.
[8] A. A. Tseng, Small, (2005), 1, 924.
[9] C. Y. Nam, J. Y. Kim, J. E. Fischer, Appl. Phys. Lett., (2005), 86, 193112.
[10] G. D. Marzi, D. Iacopino, A. J. Quinn, G. Redmond, J. Appl. Phys., (2004), 96,
3458.
[11] V. Gopal, E. A. Stach, V. R. Radmilovic, Appl. Phys. Lett., (2004), 85, 49.
[12] S. B. Cronin, Y.-M. Lin, O. Rabin, M. R. Black, J. Y. Ying, M. S. Dresselhaus, P.
51

L. Gai, J.-P. Minet, J.-P. Issi, Nanotechnology, (2002), 13, 653.
[13] J.-F. Lin, J. P. Bird, L. Rotkina, P. A. Bennett, Appl. Phys. Lett., (2003), 82, 802.
[14] K. Q. Peng, H. Fang, J. J. Hu, Y. Wu, J. Zhu, Y. J. Yan, and S. T. Lee, Chem.
Eur. J., (2006), 12, 7942.
[15] K. Q. Peng, J. J. Hu, Y.J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu,
Adv. Funct. Mater., (2006), 16, 387.
[16] K. Q. Peng, Y. J. Yan, S. P.Gao, and J. Zhu, Adv. Mater., (2002), 14, 1164.
[17] K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, Adv. Funct. Mater., (2003), 13,
127.
[18] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, New York, 1981.
[19] Shao-Pin Chiu, Yong-Han Lin and Juhn-Jong Lin, Nanotechnology, (2009), 20,
015203.
[20] P. W. Anderson, Phys. Rev., (1958), 109, 1492.
[21] Kazuo Morigaki, Physics of Amorphous Semiconductor, Hiroshima Institute. of
Technology, Japan, Imperial College Press, 1999.
[22] A. Miller, and S. Abrahams, Phys. Rev., (1960), 120, 745.
[23] N. F. Mott, Phil. Mag., (1969), 19, 835.
[24] N. F. Mott, Phil. Mag., (1975), 32, 961.
[25] N. F. Mott and E. A. Davis, Phil. Mag., (1970), 22, 903.

52

[26] N. F. Mott, Phil. Mag., (1970), 22, 7.
[27] N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials
2nd edited, Oxford University Press, 1979.
[28] B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors,
Springer-Verlag, Berlin, 1984.
[29] A. L. Efros and B. I. Shklovskii, J. Phys. C, (1975), 8, L49.
[30] M. L. Knotek et al., Phys. Rev. Lett., (1973), 30, 853.
[31] D. K. Paul and S. S. Mitra, Phys. Rev. Lett., (1973), 31, 1000.
[32] R. M. Hill, Phil. Mag., (1971), 24, 1307.
[33] V. Ambegaokar, B. I. Halperin, and J . S. Langer, Phys. Rev. B, (1971), 4, 2612.
[34] Yanyan Cao, Alexey E. Kovalev, Rui Xiao, Jaekyun Kim, Theresa S. Mayer, and
Thomas E. Mallouk, Nano Lett., (2008), 8, 4653.
[35] G. K. van Ancum, M. A. J. Verhoeven, D. H. A. Blank, and H. Rogalla, Phys.
Rev. B, (1995), 52, 8.
[36] W. Y. Jang, N. N. Kulkarni,C. K. Shih, and Z. Yao, Appl. Phys. Lett., (2004), 84,
1177.
[37] Yong-Jun Ma, Ze Zhang, Feng Zhou, Li Lu, Aizi Jin and Changzhi Gu,
Nanotechnology, (2005), 16, 746.
[38] Rajesh Kumar, and Neeraj Khare, Thin Solid Films, (2008), 516, 1302.

53

[39] C. Y. Nam, D. Tham, and J. E. Fischer, Nano. Lett., (2005), 5, 2029.
[40] Zishan Husain Khan, M Husain, T P Perng, Numan Salah and Sami Habib, J.
Phys.: Condens. Matter, (2008), 20, 475207.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45628-
dc.description.abstract在本論文中,我們利用化學濕蝕刻備製n型一維單晶奈米線,並且利用聚焦離子束的直寫技術將鉑金屬沉積在矽奈米線上以連接金電極。
在第一部分中,我們研究金屬鉑與矽奈米線接觸的電性與接觸電阻,我們發現到利用聚焦離子束沉積的鉑會和矽奈米線在接面形成歐姆接觸,其中特性接觸電阻值大約為10-6 (Ω-cm2),這個現象和之前的研究有非常大的不同因為,理論上金屬鉑對矽接觸應是蕭基接觸。為了要了解這個現象,我們研究了接觸面的結構特性與電流傳輸機制。從穿隧式顯微鏡的觀察我們可以發現到矽奈線會形成非晶的現象,並且因為電子在非晶的材料上其平均自由路徑很短,所以電流傳輸機制應該用擴散理論來解釋之。根據擴散理論,我們計算出非常低的有效能障,自由載子濃度與遷移率。根據我們的研究,費米能階釘住效應是造成很小的有效能障的主因,進而造成金屬鉑對矽奈米線形成歐姆接觸
在第二部分中,我們研究了電子在利用聚焦離子束沉積的鉑金屬連接的矽奈米線之傳輸機制。在導電率與溫度的關係中,我們可以分成兩個區塊來討論。在高溫區中,電子利用熱激發在奈米線上傳輸。電子在矽奈米線的施體能接經由熱激發到導電帶,其熱活化能為0.045電子伏特。因為聚焦離子束在矽奈米線造成的無序效應,在低溫區中,電子傳輸機制可以用莫特的變程跳躍傳輸解釋之。根據莫特的理論,我們計算了莫特參數如跳躍距離、在費米能階的電子態密度、跳躍能量與定域化長度,其值與莫特的理論相符合。
zh_TW
dc.description.abstractIn this thesis, The galvanic wet etching was adopted to fabricate single-crystalline n-Si nanowires (NWs) at room temperature in HF/AgNO3 solution. The focus-ion-beam-deposited Pt (FIB-Pt) was employed to connect photolithographically prepared Cr/Au (5/60 nm) pads on a Si substrate which was capped with a 600 nm thick SiO2 layer deposited by plasma-enhanced chemical vapor deposition (PECVD).
First, we investigate the electrical characteristic of FIB-Pt contact to Si NWs under various Ga+ dosage. We show that FIB-Pt contact to Si NWs forms very low contact resistance compared with present studies, the specific contact resistivity was estimated in the order of 10-6 Ω-cm2. To gain insight on ultra low contact resistance, the morphologic of structure and electrical transport have been studied. The image of TEM demonstrates that the existence of FIB-induced amorphization under Pt contacts, the ultra low effective barrier height was calculated using diffusion theory. The free carrier concentration and mobility has also been estimated. Due to the existence of FIB-induced amorphization, the Fermi level pinning by surface states might be responsible for the barrier height lowering and further lower the specific contact resistivity.
Second, we study the transport mechanism of Ga+ doped and undoped of n-Si NWs. The temperature-dependent four-probe measurements indicate that the electrical conductivity of the Si NWs exhibits two regimes. Thermal activated transport dominates at low temperature range. The Mott’s variable range hopping (Mott-VRH) model is applied to the conduction at high temperature range due to FIB-induced disorder. Mott’s parameters of Si NWs, such as hopping energy, hopping distance and density of states at Fermi level have been estimated.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:31:20Z (GMT). No. of bitstreams: 1
ntu-98-R96941100-1.pdf: 500277 bytes, checksum: c56342c7af52a41501f28fabd41e2e90 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents摘要……………………………………………………………………………………i
Abstract ……………………………………………………………………………….ii
Acknowledgement …………………………………………………………………...iii
Contents……………………………………………………………………………….iv
List of Tables ………………………………………………………………………….v
List of Figures………………………………………………………………………...vi
Chapter 1 : Introduction and Experimental 1
1.1 Introduction of Si NWs and Focused Ion Beams 1
1.2 Experimental 3
1.3 Reference……………...…………………………….……………………………6
Chapter 2 : Transport mechanism of FIB-Pt/n-Si NWs systems 9
2.1 Introduction 9
2.2 Experimental 10
2.3 Results and Discussion 12
2.4 Summary 19
2.5 Reference……………...…………………………….…………………………..29
Chapter 3 : Transport mechanism of n-Si NWs 33
3.1 Introduction 33
3.2 Experimental 34
3.3 Results and Discussion 35
3.4 Summary 42
3.5 Reference……………...…………………………….…………………………..50
Chapter 4: Conclusions 54
dc.language.isoen
dc.subject聚焦離子束zh_TW
dc.subjectn型矽zh_TW
dc.subject奈米線zh_TW
dc.subject變程跳躍zh_TW
dc.subject擴散理論zh_TW
dc.subjectn-type Sien
dc.subjectvariable range hoppingen
dc.subjectdiffusion theoryen
dc.subjectFIBen
dc.subjectnanowireen
dc.title利用聚焦離子束沉積鉑與矽奈米線接觸之傳輸機制zh_TW
dc.titleTransport Mechanism of Si Nanowires Contacted to Pt Deposited by Focus-Ion-Beamen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee管傑雄(Chieh-Hsiung Kuan),林恭如(Gong-Ru Lin),黃建璋(JianJang Huang)
dc.subject.keywordn型矽,奈米線,聚焦離子束,擴散理論,變程跳躍,zh_TW
dc.subject.keywordn-type Si,nanowire,FIB,diffusion theory,variable range hopping,en
dc.relation.page54
dc.rights.note有償授權
dc.date.accepted2009-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
488.55 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved