Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45627
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳志毅
dc.contributor.authorGuan-Ru Leeen
dc.contributor.author李冠儒zh_TW
dc.date.accessioned2021-06-15T04:31:17Z-
dc.date.available2014-08-20
dc.date.copyright2009-08-20
dc.date.issued2009
dc.date.submitted2009-08-19
dc.identifier.citation1.M. Pope, H. P. Kallmann, and P. J. Magnante, J. Chem. Phys. 38, 2042 (1963)
2.C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)
3.J. Zhao, S. Xie, S. Han, Z. Yang, L. Ye, and T. Yang, Synth. Met. 114, 251 (2000)
4.A. Anderson, N. Johansson, P. Bröms, N. Yu, D. Lipo, and W. R. Salaneck, Adv. Mater. 10, 859 (1998)
5.T. Ishida, H. Kobayashi, and Y. Nakato, J. Appl. Phys. 73, 4344 (1993)
6.M. Bender, J. Trube, and J. Stollenwerk, Appl. Phys. A 69, 397 (1999)
7.T. Futagami, Y. Shigesato, and T. Yasui, Jpn. J. Appl. Phys. Part 1 37, 6210 (1998)
8.T. Maruyama and K. Fukui, Thin Solid Films 203, 297 (1991)
9.V. Vasu and A. Subrahmanyam, Thin Solid Films 193/194, 696 (1990)
10.F. O. Adurodija, H. Izumi, and T. Ishihar, Thin Solid Films 350, 79 (1999)
11.H. J. Kim, J. W. Bae, and J. S. Kim, Surf. Coat. Technol. 131, 201 (2000)
12.J. Matsuo, H. Katsumata, and E. Minami, Nucl. Instrum. Methods Phys. Res. B 161, 952 (2000)
13.M. H. Sohn, D. Kim, and S. J. Kim, J. Vac. Sci. Technol. A 21, 1347 (2003)
14.J. S. Kim, M. Granström, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, and F. Cacialli, J. Appl. Phys. 84, 6859 (1998)
15.S. K. So, W. K. Choi, C. H. Cheng, L. M. Leung, and C. F. Kwong, Appl. Phys. A 68, 447 (1999)
16.C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, Appl. Phys. Lett. 70, 1348 (1997)
17.C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. 65, 3610 (1989)
18.C. Shen, I. G. Hill, and A. Kahn, Adv. Mater. 11, 1523 (1999)
19.E. I. Haskal, A. Curioni, P. F. Seidler, W. Andreoni, Appl. Phys. Lett. 71, 1151 (1997)
20.L. S. Hung, L. S. Liao, C. S. Lee, and S. T. Lee, J. Appl. Phys. 86, 4607 (1999)
21.L. S. Hung, Thin Solid Films 363, 47 (2000)
22.S. Naga, M. Tamekawa, T. Terashita, H. Okada, H. Anada, and H. Onnagawa, Synth. Met. 91, 129 (1997)
23.J. Salbeck, N. Yu, Bauer, F. Weissotel, and H. Bestgen, Synth. Met. 91, 209 (1997)
24.U. Bach, K. D. Cloedt, H. Spreitzer, and M. Gratzel, Adv. Master. 12, 1060 (2000)
25.M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature 395, 151 (1998)
26.C. D. Dimitrakopoulos and D. J. Mascaro, IBM J. Res. Dev. 45, 11 (2001)
27.D. Kearns and M. Calvin, J. Chem. Phys. 29, 950 (1958)
28.R. L. Carroll and C. B. Gorman, Angew. Chem. Int. Ed. 41, 4378 (2002)
29.M. Belletete, M. Ranger, S. Beaupre, L. Mario, and G. Durocher, Chem. Phys. Lett. 316, 101 (2000)
30.M. Redecker, D. D. C. Bradley, M. Inbasekaran, W. W. Wu, and E. P. Woo, Adv. Mater. 11, 241 (1999)
31.C. C. Wu, Y. T. Lin, K. T. Wong, R. T. Chen, and Y. Y. Chien, Adv. Mater. 16, 61 (2004)
32.K. T. Wong, Y. Y. Chien, R. T. Chen, C. F. Wang, Y. T. Lin, H. H. Chiang, P. Y. Hsieh, C. C. Wu, C. H. Chou, Y. O. Su, G. H. Lee, and S. M. Peng, J. Am. Chem. Soc. 124, 11576 (2002)
33.C. C. Wu, T. L. Liu, Y. T. Lin, W. Y. Hung, T. H. Ke, K. T. Wong and T. C. Chao, Appl. Phys. Lett. 85, 1172 (2004)
34.T. C. Chao, Y. T. Lin, C. Y. Yang, T. S. Hung, H. C. Chou, C. C. Wu, and K. T. Wong, Adv. Mater. 17, 992 (2005)
35.K. T. Wong, Y. L. Liao, Y. T. Lin, H. C. Su, and C. C. Wu, Org. Lett. 7, 5131 (2005)
36.C. C. Wu, T. L. Liu, W. Y. Hung, Y. T. Lin, K. T. Wong, R. T. Chen, Y. M. Chen, and Y. Y. Chien, J. Am. Chem. Soc. 125, 3710 (2003)
37.E. H. Magin and P. M. Borsenberger, J. Appl. Phys. 72, 787 (1993)
38.P. M. Borsenberger, L. T. Pautmeier, and H. Bässler, Phys. Rev. B 46, 12145 (1992)
39.L. Y. Chen, W. Y. Hung, Y. T. Lin, C. C. Wu , T. C. Chao, T. H. Hung, K. T. Wong, Appl. Phys. Lett. 87, 112103 (2005)
40.H. Hertz, Ann. Physik 31, 983 (1887)
41.J. J. Thomson, Phil. Mag. 48, 547 (1899)
42.P. Lenard, Ann. Phys. 2, 359 (1900)
43.P. Lenard, Ann. Phys. 8, 149 (1902)
44.A. Einstein, Ann. Phys. 17, 132 (1905)
45.C. W. Berglund and W. E. Spicer, Phys. Rev. 136, A1030 & A1044 (1964)
46.C. R. Brundle, Surf. Sci. 48, 99 (1975)
47.J. Schwinger, Phys. Rev. 75, 1912 (1949)
48.H. Winick and S. Doniach, Synchrotron Radiation Research, Plenum, New York (1980)
49.P. C. Tseng, H. J. Lin, S. C. Chung, C. I. Chen, H. F. Lin, T. E. Dann, Y. F. Song, T. F. Hsieh, K. L. Tsang, and C. N. Chang, Rev. Sci. Instrum. 66, 1658 (1995)
50.I. H. Hong, T. H. Lee, G. C. Yin, D. H. Wei, J. M. Juang, T. E. Dann, R. Klauser, T. J. Chuang, C. T. Chen, and K. L. Tsang, Nucl. Instrum. Meth. A. 905, 467 (2001)
51.C. H. Ko, R. Klauser, D. H. Wei, H. H. Chan, and T. J. Chuang, J. Syn. Rad. 5, 299 (1998)
52.D. P. Woodruff, T. A. Delchar, Modern Techniques of Surface Science, Cambridge University Press, Cambridge, (1986)
53.J. Hoelzel, F. K. Schulte, H. Wagner, Solid State Surface Physics, Springer, Berlin, (1979)
54.H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. 11, 605 (1999)
55.C. I. Wu, Y. Hirose, H. Sirringhaus, and A. Kahn, Chem. Phys. Lett. 272, 43 (1997)
56.M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc. 107, 3902 (1985)
57.I. G. Hill, A. Kahn, J. Cornil, D. A. dos Santos, J. L. Bredas, Chem. Phys. Lett. 317, 444 (2000)
58.G. Greczynski, M. Fahlman, W. R. Salanek, A. Dkhssi, D. A. dos Santos, and J.L. Bredas, J, Chem. Phys. 116, 1700 (2002)
59.H. E. Simmons and T. Fukunaga, J. Am. Chem. Soc. 89, 5208 (1967)
60.P. Maslak and A. Chopra, J. Am. Chem. Soc. 115, 9331 (1993)
61.C. C. Wu, W. G. Liu, W. Y. Hung, T. L. Liu, K. T. Wong, Y. Y. Chien, R. T. Chen, T. H. Hung, T. C. Chao, and Y. M. Chen, Appl. Phys. Lett. 87, 052103 (2005)
62.N. Sato, K.Seki, J. Inokuchi, J. Chem. Soc. Faraday Trans. 277, 1621 (1981)
63.C .B. Duke, T. J. Fabish, and A. Paton, Chem. Phys. Lett. 49, 133 (1977)
64.H. W. Lin, C. L. Lin, H. H. Chang, Y. T. Lin, C. C. Wu, Y. M. Chen, R. T. Chen, Y. Y. Chien, and K. T. Wong, J. Appl. Phys. 95, 881 (2004)
65.M. G. Mason, C. W. Tnag, L. S. Hung, P. Raychaudhuri, J. Madathil, D. J. Giesen, S. T. Lee, L. S. Liao, L. F. Cheng, W. R. Salaneck, D. A. dos Santos, and J. L. Bredas, J. Appl. Phys. 89, 2756 (2001)
66.C. I. Wu, G. R. Lee, and T. W. Pi, Appl. Phys. Lett. 87, 212108 (2005)
67.L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett. 70, 152 (1997)
68.G. Parthasarathy, C. Xhen, A. Kahn, and S. R. Forrest, J. Appl. Phys. 89, 4986 (2001)
69.J. J. Pireaux, J. Riga, R. Caudano, J. J. Verbist, J. Delhalle, S. Delhalle, J. M. Andre, and Y. Gobillon, Phys. Scr. 16, 329 (1997)
70.M. H. Chen, Y. H. Chen, C. T. Lin, G. R. Lee, C. I. Wu, D. S. Leem, J. J. Kim, and T. W. Pi, J. Appl. Phys. 105, 113714 (2009)
71.T. Hasegawa, S. Miura, T. Moriyama, T. Kimura, I. Takaya, Y. Osato, and H. Mizutani, SID Int. Symp. Digest Tech. Papers 35, 154 (2004)
72.C. I. Wu, C. T. Lin, Y. H. Chen, and M. H. Chen, Y. J. Lu and C. C. Wu, Appl. Phys. Lett. 88, 152104 (2006)
73.C. I. Wu and A. Kahn, Appl. Phys. Lett. 74, 1433 (1999)
74.C. I. Wu and A. Kahn, J. Appl. Phys. 86, 3029 (1999)
75.C. W. Chen, Y. J. Lu, C. C. Wu, E. H. E. Wu, C. W. Chu, and Y. Yang, Appl. Phys. Lett. 87, 241121 (2005)
76.H. Kanno, R. J. Holmes, Y. Sun, S. K. Cohen, and S. R. Forrest, Adv. Mater. 18, 339 (2006)
77.J. Cao, X. Y. Jiang, and Z. L. Zhang, Appl. Phys. Lett. 89, 252108 (2006)
78.H. You, Y. Dai, Z. Zhang, and D. Ma, J. Appl. Phys. 101, 026105 (2007)
79.K. Morii, M. Ishida, T. Takashima, T. Shimoda, Q. Wang, M. K. Nazeeruddin, and M. Grätzel, Appl. Phys. Lett. 89, 183510 (2006)
80.J. H. Li, J. Huang, and Y. Yang, Appl. Phys. Lett. 90, 173505 (2007)
81.A. V. Murugan, A. K. Viswanath, C. S. Gopinath, and K. Vijayamohanan, J. Appl. Phys. 100, 074319 (2006)
82.A. V. Murugan, A. K. Viswanath, G. Campet, C. S. Gopinath, and K. Vijayamohanan, Appl. Phys. Lett. 87, 243511 (2005)
83.C. W. Chu, S. H. Li, C. W. Chen, V. Shrotriya, and Y. Yang, Appl. Phys. Lett. 87, 193508 (2005)
84.Y. Guo, Y. Liu, G. Y. Chong-an Di, W. Wu, S. Ye, Y. Wang, X. Xu, and Y. Sun, Appl. Phys. Lett. 91, 263502 (2007)
85.C. I. Wu, C. T. Lin, G. R. Lee, T. Y. Cho, C. C. Wu, and T. W. Pi, J. Appl. Phys. 105, 033717 (2009)
86.S. Oyama, R. Radhakrishnan, M. Seman, J. Kondo, K. Domen, and K. Asakura, J. Phys. Chem. B 107, 1845 (2003)
87.J. Blochwitz, M. Pfeiffer, T. Fritz, and K. Leo, Appl. Phys. Lett. 73, 729 (1998)
88.W. Gao and A. Kahn, Appl. Phys. Lett. 79, 4040 (2001)
89.W. Gao and A. Kahn, J. Appl. Phys., 94, 359 (2003)
90.K. Naito and A. Miura, J. Phys. Chem. 97, 6240 (1993)
91.S. Fratiloiu, F. C. Grozema, Y. Koizumi, S. Seki, A. Saeki, S. Tagawa, S. P. Dudek, and L. D. A. Siebbeles, J. Phys. Chem. B 110, 5984 (2006)
92.Y. Koizumi, S. Seki, A. Saeki, and S. Tagawa, Rad. Phys. Chem. 76, 1337 (2007)
93.M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford CT (2004)
94.C. I. Wu, G. R. Lee, C. T. Lin, Y. H. Chen, Y. H. Hong, W. G. Liu, C. C. Wu, K. T. Wong, and T. C. Chao, Appl. Phys. Lett. 87, 242107 (2005)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45627-
dc.description.abstract利用高解析度同步輻射光源之光電子發射能譜,本論文將有系統地研究寡聚芴化物之電子結構、界面化學以及變溫特性。首先,我們觀察並歸納出寡聚芴化物的能階結構和許多重要的特性,包括游離能、界面電偶極和發光能隙,同時我們也在這一系列寡聚芴化物中發現到一些規則性的趨勢。而根據本篇論文的研究,寡聚芴化物的支鏈取代物將會大幅地影響到其電子和光學特性,寡聚芴化物之元件操作性能,也會受到支鏈取代物的影響。為了讓寡聚芴化物元件之電子注入能障降低,並且提升電子在陰極界面的注入效率,氟化鋰和氟化銫等鹼金屬氟化物將被用作為寡聚芴化物之n型摻雜物,這兩樣n型摻雜物都能夠與寡聚芴化物反應並造成n型摻雜的結果,但卻不需要鋁的存在,這使得寡聚芴化物元件在陰極金屬的使用上有了更多地選擇。然而想要獲得高效率之元件陰極結構,只有n型摻雜是不夠地,透過研究我們發現,n型摻雜和能隙能階的產生都是獲得高效率元件陰極結構的必要條件。另外,經由價電帶電子能譜的證明,我們證實了碳酸銫對寡聚芴化物也是有效的n型摻雜物,而氧化鉬等過渡金屬氧化物則是有效的p型摻雜物,還有四氟-四氰基代對二亞甲基苯則是有機物之p型摻雜物。最後我們更探討了溫度變化對寡聚芴化物能階和構形的影響,在不同溫度下蒸鍍之寡聚芴化物將會改變其分子內部不同單體單元之相對角度,在低溫時角度大約是將近垂直的狀態,但在室溫的穩定狀態下則會呈現41°的角度。而原本鹼金屬氟化物和寡聚芴化物之間會產生n型摻雜效果的反應,在低溫時將不會出現,這是因為在低溫時沒有足夠之熱能來驅使反應發生,但一旦溫度回升到室溫時,鹼金屬氟化物和寡聚芴化物之間的n型摻雜反應將會再度發生。zh_TW
dc.description.abstractThe electronic structures, interfacial chemistry, and temperature dependences of oligofluorenes are investigated via high resolution synchrotron radiation photoemission. The energy structures and physical properties of pristine oligofluorenes are reported and their regular tendencies are observed. Substitutions of the pristine oligofluorenes will significantly influence the electronic and optical characteristics and the operation of oligofluorene-based devices are also substitution dependent. In order to lower the electron injection barrier and enhance the electron injection efficiency at the cathode, the alkali metal fluorides as LiF and CsF are used as n-type dopants for the oligofluorenes. Both of them react with oligofluorenes without the existence of Al and offer us more choices for cathode metals. Our results indicate that to obtain an effective cathode structure, not only n-type doping effect, but also gap state appearance is crucial. In addition, Cs2CO3 as n-type dopant and transition metal oxide, such as MoOx, and F4-TCNQ as p-type dopants are verified. Influences of temperature and inter-unit angle to the electronic structures of oligofluorenes are also studied. Deposition at different temperatures alters the electronic structures due to the inter-unit angles in oligofluorenes molecules. To be specific, the fluorene-units at low temperature are nearly perpendicular to each other and the inter unit angle becomes 41° in the stable state at room temperature. In addition, the low temperature will soften the n-type doping reaction between alkali metal fluoride and oligofluorenes, since the thermal energy is too low to drive this reaction. Upon the sample warming back to the room temperature, however the reaction between these two layers is completed.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:31:17Z (GMT). No. of bitstreams: 1
ntu-98-F92941059-1.pdf: 2369775 bytes, checksum: 3f92eb04dfe51fd951b1a9cca8f0a183 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsABSTRACT ...1
中文摘要 ...2
CHAPTER 1 INTRODUCTION ...3
1.1 Organic Light Emitting Devices ...3
1.2 Oligofluorenes ...6
CHAPTER 2 EXPERIMENTS ...15
2.1 Photoemission Spectroscopy ...15
2.2 Synchrotron Radiation ...17
2.3 Hemispherical Analyzer ...20
CHAPTER 3 PRISTINE OLIGOFLUORENES ...26
3.1 Valence-Band Spectra ...26
3.2 Influences of Substitution ...28
CHAPTER 4 N-TYPE DOPED OLIGOFLUORENES ...39
4.1 Lithium Fluoride ...39
4.2 Cesium Fluoride ...41
4.3 Cesium Carbonate ...44
CHAPTER 5 P-TYPE DOPED OLIGOFLUORENES ...57
5.1 Molybdenum Oxide ...57
5.2 Tetrafluorotetracyanoquinodimethane (F4-TCNQ) ...59
CHAPTER 6 OLIGOFLUORENES AT LOW TEMPERATRUE ...66
6.1 Photoemission Measurement ...66
6.2 Quantum Chemistry Calculation ...69
6.3 Temperature-Dependent Reaction ...71
CHAPTER 7 CONCLUSION ...81
REFERENCE ...84
dc.language.isoen
dc.subject同步輻射zh_TW
dc.subject寡聚芴化物zh_TW
dc.subject有機發光二極體zh_TW
dc.subject光電子發射能譜zh_TW
dc.subjectphotoemissionen
dc.subjectOLEDen
dc.subjectoligofluorenesen
dc.subjectsynchrotron radiationen
dc.title寡聚芴化物有機發光二極體之電子結構及界面化學zh_TW
dc.titleElectronic Structures and Interfacial Chemistry of Oligofluorene-based Organic Light Emitting Devicesen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳奕君,汪根欉,吳忠幟,皮敦文
dc.subject.keyword有機發光二極體,寡聚芴化物,光電子發射能譜,同步輻射,zh_TW
dc.subject.keywordOLED,oligofluorenes,photoemission,synchrotron radiation,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2009-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved