Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45614
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor張宏鈞
dc.contributor.authorJia-jheng Linen
dc.contributor.author林家正zh_TW
dc.date.accessioned2021-06-15T04:30:30Z-
dc.date.available2010-08-21
dc.date.copyright2009-08-21
dc.date.issued2009
dc.date.submitted2009-08-19
dc.identifier.citationBibliography
[1] Berenger, J. P., ``A Perfectly Matched Layer for the Absorption of Electromagnetic Waves.' J. Comp. Phys., vol. 114, pp. 185{200, 1994.
[2] Berini, P., ``Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures.' Phys. Rev. B, vol. 61, pp. 484-503, 2000.
[3] Bierwirth, K., and N. Schulz, F. Arndt, ``Finite-difference analysis of rectangular dielectric waveguide structures,' IEEE. Trans. Microwave Theory Tech.,
vol. 34, pp. 1104-1113, 1986.
[4] Bodewig, E., Matrix Calculus. Amsterdam: North Holland Pub. Co., 1956.
[5] Boltasseva, A., and S. I. Bozhevolnyi, ``Directional couplers using long-range surface plasmon polariton waveguides,' IEEE. J. Quantum Electron, vol. 12, pp. 1233-1241, 2006.
[6] Cavendish, J. C., D. A. Field, and W. H. Frey, ``An approach to automatic three-dimensional finite element mesh generation,' Int. J. Number. Meth. Eng., vol. 21, pp. 329-347, 1985.
[7] Cendes, Z. J., and P. Silvster, ``Numerical solution of dielectric loaded waveguides: Finite-element analysis,' IEEE Trans. Microwave Theory Tech., vol. MTT-18, pp. 1124{1131, 1970. 95
[8] Charbonneau, R., P. Berrini, E. Berolo, and E. Lisicka, ``Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width,' Opt. Lett., vol. 25, pp. 844-846, 2000.
[9] Chen, H. J., Hybrid-Elements FEM Based Complex Mode Solver for Optical Waveguides with Triangular-Mesh Generator. M. S. Thesis, Graduate Institute of Electro-optical Engineering, National Taiwan University, Taipei, Taiwan, June 2003.
[10] Chen, M. F., Electromagnetic Study of Surface Plasmon and Antireflection Structures. Ph.D. Dissertation, Graduate Institute of Electro-optical Engineering, National Taiwan University, Taipei, Taiwan, Oct. 2008.
[11] Chiang, Y. C., Y. P. CHiou, and H. C. Chang, Improved full-vectorial finite-difference mode solver for optical waveguides with step-index profiles,' J. Lightwave Technol., vol. 20, pp. 1609{1618, 2002.
[12] Chung, C. C., Analysis of Slot and Triangle-Shaped Surface Plasmonic Waveguides Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Method. M. S. Thesis, Graduate Institute of Electro-optical Engineering, National Taiwan University, Taipei, Taiwan, June 2008.
[13] Grillot, F., L. Vivien, and E. Cassan, ``Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides ,' J. Lightwave Technol., vol. 24, pp. 891-896, 2006.
[14] Harley, G. R. and R. E. Smith, ``Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions,' J. Lightwave Technol., vol. 13, pp. 465-469, 1995.
[15] Hsu, S. M., Full-Vectorial Finite Element Beam Propagation Method Based on Curvilinear Hybrid Edge/Nodal Elements for Optical Waveguide Problems. M. 96 S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2004.
[16] Jin, J., The Finite Element Method in Electromagnetics., 2nd edition Wiley-IEEE Press, 2002
[17] Koshiba, M., and K. Tsuji, ``Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,' J. Lightwave Technol., vol. 18, pp. 737-743, 2000
[18] Krenn, J. R., and J.C. Weeber, ``Surface plasmon polaritons in metal stripes and wires,' Phil. Trans. R. Soc. Lond., vol. 18, pp. 739-756, 2004
[19] Lee, J.-F., D.-K. Sun, and Z. J. Cendes, ``Full-wave analysis of dielectric waveguides using tangential vector finite elements,' IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1262-1271, 1991.
[20] Lee, B. H., J. B. Eom, J. Kim, D. S. Moon, and U. Paek, ``Photonic crystal fiber coupler,' Opt. Lett., vol. 27, pp. 812-814, 2002.
[21] LÄusse, P., P. Stuwe, and J. SchÄule, ``Analysis of vectorial mode fields in optical waveguides by a new finite difference method,' J. Lightwave Technol, vol. 12, pp. 487-493, 1994.
[22] Maier, S. A., Surface Plasmons: Fundamental and Application. Berlin: Springer, 2007, pp. 59-62.
[23] Nikolajsen, T., K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, ``Polymerbased surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,' Appl, Phys. Lett., vol. 82, pp. 668-670, 2003.
[24] Palik, E. D. and G. Ghosh, Handbook of Optical Constants of Solids. New York: Academic, 1985. 97
[25] Peng, C. H., Analysis of Photonic Crystal Fibers Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Method. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University,
Taipei, Taiwan, June 2007.
[26] Peterson, A. F., ``Finite element formulation for scattering from two- dimensional heterogeneous bodies,' IEEE Trans. Antennas Propagat., vol. AP- 43, pp. 357-365, 1994.
[27] Pierre, B., ``Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics,' Opt. lett., vol. 24, pp. 1011-1013, 1999.
[28] Pierre, B., ``Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics,' Opt. Exp., vol. 7, pp. 329-335, 2000.
[29] Pile, D. F. P., and D. K. Gramotnev, ``Channel plasmon-polariton in a triangular groove on a metal surface,' Opt. Lett., vol. 29, pp. 1069-1071, 2004.
[30] Pile, T. Ogawa, and D. K. Gramotnev, ``Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,' Appl. Phys. Lett., vol. 87, 2005.
[31] Raether, H., Surface Plasmons., Berlin: Springer-Verlag, 1988.
[32] Rebay, S., ``Efficient unstructured mesh generation by means of Delaunay triangulation and Bowyer-Watson algorithm,' J. Comput. Phys., vol. 105, pp. 125-138, 1993.
[33] Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, ``Perfectly matched anisotropic absorber for use as an absorbingboundary condition,' IEEE Trans. Antennas Propagat., vol. 43, pp. 1460-1463, 1995.
[34] Saito, K., and M. Koshiba, ``Approximate scalar ‾nite-element beam propagation method with perfectly matched layers for anisotropic optical waveguides,' J. Lightwave Technol., vol. 19, pp. 786-792, 2001. 98
[35] Saito, K., and M. Koshiba, ``Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,' IEEE J. Quantum Electron., vol. 38, pp. 927{933, 2002.
[36] Satuby, Y., and M. Orenstein, ``Surface-plasmon-polariton modes in deep metallic trenches-measurement and analysis,' Opt. Express, vol. 15, pp. 4247-4252, 2007.
[37] Schulz, D., C. Gingener, M. Bludsuweit, and E. Voges, ``Finite element beam propagation method,' J. Lightwave Technol., vol. 16, pp. 1336-1341, 1998.
[38] Teixeira, F. L., and W. C. Chew, ``PML-FDTD in cylindrical and spherical grids,' IEEE Microwave Guided Wave Lett., vol. 7, pp.285-287, 1997.
[39] Veronis, G., and S. Fan, ``Guided subwavelength plasmonic mode supported by a slot in a thin metal film,' Opt. Lett., vol. 30, pp. 3359-3361, 2005.
[40] Veronis, G., and S. Fan, ``Modes of subwavelength plasmonic slot waveguides,' J. Lightwave Technol., vol. 25, pp. 2511-2521, 2007.
[41] Veronis, G., and S. Fan, ``Crosstalk between three-dimensional plasmonic slot waveguides,' Opt. Express, vol. 16, pp. 2129-2140, 2008.
[42] Yan, M., and M. Qiu, ``Guided plasmon polariton at 2D metal corners ,' J. Opt. Soc. Am. B, vol. 24, pp. 2333-2342, 2007.
[43] Yariv, A., and P. Yeh, Photonics: Optical Electronics in Modern Communications. New York: Oxford University Press, 2006
[44] Zia, R., A. S. Jon, C. Anu, and L. B. Mark, ``Plasmonics: the next chip-scale technology,' MaterialsToday vol. 9, pp. 20-27, 2006.
[44] Zia, R., J. A. Schuller, A. Chandran, and M. L. Brongersma, ``Plasmonics: the next chip-scale technology,' MaterialsToday vol. 9, pp. 20{27, 2006.
[45] Zia, R., M. D. Selker, and M. L. Brongersma, ``Leaky and bound modes of surface plasmon waveguides,' Phys. Rev. B, vol. 71, pp. 165431-1-165431-9 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45614-
dc.description.abstract在這篇論文中,我們採用以曲線混和型元素為基底的全向量有限元素虛軸波束傳播法搭配完美匹配層來精準地分析幾種電漿子波導。 整篇我們的研究方向主要著重於方形的3D 結構電漿子波導。因此一開始我們將藉由一些長或寬是無限長的波導來了解電漿子模態在直角結構上的現象。 建立了一些基本觀念後,接著我們再分析一條金屬薄線在二氧化矽基板上的條形電漿子波導。我們找到了三種模態,分別為束縛模態、逸漏式模態及邊緣模態。我們理論分析了高階束縛模態在條形波導上寬度的限制,並且與數值計算的結果有不錯的一致性。接下來,我們會討論兩個條形波導的電磁場耦合問題。當兩個波導的電磁場互相耦合時,會產生對稱及反對稱模態,我們分別找出兩種模態的場形圖及計算出它們的等效傳播常數及耗損。我們也計算了幾個頻率的結果並比較兩種模態的色散關係圖。最後,我們由等效傳播常數及耗損的結果,可以推算出兩條形波導之間的電磁干擾問題。zh_TW
dc.description.abstractIn this thesis, we adopt the full-vectorial finite element imaginary-distance beam propagation method (FE-ID-BPM) based on the hybrid edge/nodal elements and the incorporated perfectly matched layers (PMLs) to analyze several plasmonic waveguides. We start from the simplest, infinite 3-D plamonic waveguide, which is uniform in propagating direction, for investigating the basic characteristics. Then based on those concepts, we introduce some waveguides, such as edge and stripe plasmonic
waveguides. We investigate how the size of the edge will affect the confinement and attenuation of surface plasmon polariton (SPP) edge mode. We show three types of SPP modes, including leaky, bound, and edge modes, supported by the stripe waveguide. The limited width of a thin stripe, which can support the bound mode, is analyzed by some approximation, and the results agree with that calculated by the FE-ID-BPM numerical model. Comparison among the modes is discussed. Then, we look into the coupling phenomenon of two single elements. The coupling in-
duces symmetry and antisymmetry modes, which can both be numerically obtained using the FE-ID-BPM. Related plasmonic slot and stripe waveguides are studied, and their mode patterns and dispersion diagrams presented. We calculate the effective propagating constant and attenuation for different spacings of the two adjacent stripes. The crosstalk between the coupled stripes is then evaluated.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:30:30Z (GMT). No. of bitstreams: 1
ntu-98-R96942082-1.pdf: 5071950 bytes, checksum: 424f323bc8d6a435598ea3aad910ebcf (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsContents
1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . .. . . 1
1.2 Numerical Methods for Waveguide Analysis . .. . . 2
1.3 Chapter Outline . . . . . . . . . . . . . . . . .4
2 Formulation and Related Techniques 5
2.1 Perfectly Matched Layers . . . . . . . . . . . . .5
2.2 The Finite Element Mode Solver . . . . . . . . . .7
2.3 The Finite Element Beam Propagation Method . . . .11
2.4 The Finite-Element Imaginary-Distance Beam Propagation Method .............................................. 15
3 Analysis of Plamonic Edge Waveguides with Different Shapes 23
3.1 Introduction of Surface Plasmon Polaritons . . . .23
3.2 Plasmonic Waveguides: Overview . . . . . . . . . .25
3.2.1 Characteristics of the Infinite Edge Waveguide .25
3.2.2 Symmetric Edge Waveguide . . . . . . . . . . . .27
3.2.3 Square Symmetric Strip Waveguide . . . . . . . .28
3.3 Modes Supported by the Asymmetric Strip Waveguide 28
4 Analysis of Coupled Plasmonic Waveguides 62
4.1 Slot Waveguide: Overview . . . . . . . . . . . . .62
4.2 Introduction to Coupled Modes of the MIM Heterostructure . . . . ............................. 65
4.3 Coupled-Stripe Waveguide . . . . . . . . . . . . .68
5 Conclusion 93
Bibliography 95
dc.language.isoen
dc.subject具垂直尖角與側邊之電漿子波導zh_TW
dc.subjectPlasmonic Waveguides with Right-Angled Corners and Edgesen
dc.title以全向量虛軸有限元素波束傳播法分析具垂直尖角與側邊之電漿子波導zh_TW
dc.titleAnalysis of Plasmonic Waveguides with Right-Angled Corners and Edges Using a Full-Vectorial Imaginary- Distance Finite-Element Beam Propagation Methoden
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧君豪,吳宗霖
dc.subject.keyword具垂直尖角與側邊之電漿子波導,zh_TW
dc.subject.keywordPlasmonic Waveguides with Right-Angled Corners and Edges,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2009-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
Appears in Collections:電信工程學研究所

Files in This Item:
File SizeFormat 
ntu-98-1.pdf
  Restricted Access
4.95 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved