Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45594
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝宏昀
dc.contributor.authorChun-Wei Leeen
dc.contributor.author李均韋zh_TW
dc.date.accessioned2021-06-15T04:29:17Z-
dc.date.available2009-08-21
dc.date.copyright2009-08-21
dc.date.issued2009
dc.date.submitted2009-08-20
dc.identifier.citation[1] Youtube, http://www.youtube.com/.
[2] I'm vlog, http://www.im.tv/vlog/.
[3] Y. Xiao, X. Du, J. Zhang, and F. Hu. Internet Protocol Television (IPTV):
The Killer Application for the Next-generation Internet. IEEE Communications
Magazine, page 127, 2007.
[4] B. Alfonsi. I Want My IPTV: Internet Protocol Television Predicted a Winner.
IEEE Distributed Systems Online, 6(2), 2005.
[5] Y. Zhang, W. Lee, and Y.A. Huang. Intrusion Detection Techniques for Mobile
Wireless Networks. Wireless Networks, 9(5):545{556, 2003.
[6] G. Holland and N. Vaidya. Analysis of TCP Performance over Mobile Ad Hoc
Networks. Wireless Networks, 8(2):275{288, 2002.
[7] N. Cranley and M. Davis. The E ects of Background Tra c on the End-to-end
Delay for Video Streaming Applications over IEEE 802.11 b WLAN Networks.
In 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile
Radio Communications, pages 1{5, 2006.
[8] N. Cranley and M. Davis. Performance Analysis of Network-level QoS with
Encoding Con gurations for Unicast Video Streaming over IEEE 802.11 WLAN
Networks. In Wireless Networks, Communications and Mobile Computing, 2005
International Conference on, volume 1, 2005.
[9] S.H. Shah, K. Chen, and K. Nahrstedt. Available Bandwidth Estimation in IEEE
802.11-based Wireless Networks. In Proceedings of 1st ISMA/CAIDA Workshop
on Bandwidth Estimation (BEst).
[10] S. Mascolo, C. Casetti, M. Gerla, MY Sanadidi, and R. Wang. TCP Westwood:
Bandwidth Estimation for Enhanced Transport over Wireless Links. In Pro-
ceedings of the 7th Annual International Conference on Mobile Computing and
Networking, pages 287{297. ACM New York, NY, USA, 2001.
[11] AW Bragg and W. Chou. Analytic Models and Characteristics of Video Tra c
in High Speednetworks. In Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 1994.
[12] H. Sun, A. Vetro, and J. Xin. An Overview of Scalable Video Streaming. Wireless
Communications and Mobile Computing, 7(2), 2007.
[13] J.R. Ohm. Advances in Scalable Video Coding. Proceedings of the IEEE,
93(1):42{56, 2005.
[14] M. Ghanbari. Two-layer Coding of Video Signals for VBR Networks. IEEE
journal on Selected Areas in Communications, 7(5):771{781, 1989.
[15] ISO/IEC 11172. Information Technology - Coding of Moving Pictures and As-
sociated Audio for Digital Storage Media at up to about 1.5 Mbit/s (MPEG1).
1993.
[16] ISO/IEC 13818-2. Information Technology - Generic Coding of Moving Pictures
and Associated Audio Information: Video (MPEG2). 1995.
[17] ISO/IEC 14496-2. Information Technology - Coding of Audio-Visual Objects,
Part 2: Visual (MPEG4). 2004.
[18] J. Bourgeois, E. Mory, and F. Spies. Video Transmission Adaptation on Mobile
Devices. Journal of Systems Architecture, 49(10-11):475{484, 2003.
[19] B. Girod. Feedback-based Error Control for Mobile Video Transmission. Pro-
ceedings of the IEEE, 1999.
[20] T. Talley and K. Je ay. Two-dimensional Scaling Techniques for Adaptive, Rate-
based Transmission Control of Live Audio and Video Streams. In Proceedings of
the Second ACM International Conference on Multimedia, pages 247{254. ACM
New York, NY, USA, 1994.
[21] M. van der Schaar, S. Krishnamachari, S. Choi, and X. Xu. Adaptive Cross-
layer Protection Strategies for Robust Scalable Video Transmission over 802.11
WLANs. IEEE Journal on Selected Areas in Communications, 21(10):1752{1763,
2003.
[22] P. Pancha and M. El Zarki. MPEG Coding for Variable Bit Rate Video Trans-
mission. IEEE Communications Magazine, 32(5):54{66, 1994.
[23] M. Kalman, E. Steinbach, and B. Girod. Adaptive Media playout for Low-delay
Video Streaming over Error-prone Channels. IEEE Transactions on Circuits and
Systems for Video Technology, 14(6):841{851, 2004.
[24] J.G. Kim, Y. Wang, and S.F. Chang. Content-adaptive Utility-based Video
Adaptation. In IEEE International Conference on Multimedia and Expo, vol-
ume 3, 2003.
[25] R.S. Ramanujan, J.A. Newhouse, M.N. Kaddoura, A. Ahamad, E.R. Chartier,
and K.J. Thurber. Adaptive Streaming of MPEG Video over IP Networks. In
Proceedings of the 22nd IEEE Conference on Computer Networks (LCN97). Cite-
seer, 1997.
[26] N. Uchida, K. Takahata, and Y. Shibata. Optimal Video Stream Transmission
Control over Wireless Network. In 2004 IEEE International Conference on Mul-
timedia and Expo, 2004. ICME'04, volume 3, 2004.
[27] PA Chou and Z. Miao. Rate-distortion Optimized Streaming of Packetized Me-
dia. IEEE Transactions on Multimedia, 8(2):390{404, 2006.
[28] P.A. Chou and A. Sehgal. Rate-distortion Optimized Receiver-driven Streaming
over Best-e ort Networks. In Packet Video Workshop. Citeseer, 2002.
[29] J. Liu, B. Li, and Y.Q. Zhang. An End-to-end Adaptation Protocol for Lay-
ered Video Multicast Using Optimal Rate Allocation. IEEE Transactions on
Multimedia, 6(1):87{102, 2004.
[30] YJ Liang, JG Apostolopoulos, and B. Girod. Model-based Delay-distortion Op-
timization for Video Streaming Using Packet Interleaving. In Signals, Systems
and Computers, 2002. Conference Record of the Thirty-Sixth Asilomar Confer-
ence on, volume 2, 2002.
[31] E. Setton and B. Girod. Congestion-distortion Optimized Scheduling of Video
over A Bottleneck Link. In IEEE Workshop on Multimedia Signal Processing.
Citeseer.
[32] G. Liebl, M. Kalman, and B. Girod. Deadline-aware Scheduling for Wireless
Video Streaming. In IEEE International Conference on Multimedia and Expo,
2005. ICME 2005, page 4, 2005.
[33] A. Majumda, D.G. Sachs, I.V. Kozintsev, K. Ramchandran, and M.M. Yeung.
Multicast and Unicast Real-time Video Streaming over Wireless LANs. IEEE
Transactions on Circuits and Systems for Video Technology, 12(6):524{534, 2002.
[34] R. Rejaie, M. Handley, and D. Estrin. Layered Quality Adaptation for Inter-
net Video Streaming. IEEE Journal on Selected Areas in Communications,
18(12):2530{2543, 2000.
[35] K. Stuhlmuller, N. Farber, M. Link, and B. Girod. Analysis of Video Transmis-
sion Over Lossy Channels. IEEE Journal on Selected Areas in Communications,
18(6):1012{1032, 2000.
[36] Recommendation H.261. Video codec for audiovisual services at p* 64 kb/s.
CCITT White Book, 1990.
[37] Recommendation H.263. Video Coding for Low Bit Rate Communication. 1995.
[38] M. Ghanbari. An adapted H. 261 Two-layer Video Codec for ATM Networks.
IEEE Transactions on Communications, 40(9):1481{1490, 1992.
[39] M. Dai, D. Loguinov, and H. Radha. Rate-Distortion Modeling of Scalable Video
Coders. In Image Processing, 2004. ICIP'04. 2004 International Conference on,
volume 2, 2004.
[40] L. Ozarow. On a Source-Coding Problem with Two Channels and Three Re-
ceivers. The Bell System Technical Journal, 59(10):1909{1921, 1980.
[41] M. Alasti, K. Sayra an-Pour, A. Ephremides, and N. Farvardin. Multiple De-
scription Coding in Networks with Congestion Problem. IEEE Transactions on
Information Theory, 47(3):891{902, 2001.
[42] D. Wu, Y.T. Hou, W. Zhu, Y.Q. Zhang, and J.M. Peha. Streaming Video over
the Internet: Approaches and Directions. IEEE Transactions on Circuits and
Systems for Video Technology, 11(3):282{300, 2001.
[43] E. Masala, D. Quaglia, and J.C. De Martin. Variable Time{Scale Streaming For
Multimedia Transmission Over IP Networks. In 13th European Signal Processing
Conference (EUSIPCO), Antalya, Turkey, 2005.
[44] E. Masala, D. Quaglia, and JC De Martin. Variable Time Scale Multimedia
Streaming Over IP Networks. IEEE Transactions on Multimedia, 10(8):1657{
1670, 2008.
[45] J.D. McCarthy, M.A. Sasse, and D. Miras. Sharp or Smooth?: Comparing The
E ects of Quantization vs. Frame Rate for Streamed Video. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages 535{542.
ACM New York, NY, USA, 2004.
[46] Valentin S. Kisimov Ronnie T. Apteker, James A. Fisher and Hanoch Neishlos.
Video Acceptability and Frame Rate. IEEE Multimedia, 2(3):32{40, 1995.
[47] J. Chakareski, S. Han, and B. Girod. Layered Coding vs. Multiple Descriptions
for Video Streaming over Multiple Paths. Multimedia Systems, 10(4):275{285,
2005.
[48] Y. Wang, S. Panwar, S. Lin, and S. Mao. Wireless Video Transport Using Path
Diversity: Multiple Description vs. Layered Coding. International Conference
on Image Processing, 1:2.
[49] Z. He and SK Mitra. A Uni ed Rate-distortion Analysis Framework for Trans-
form Coding. IEEE Transactions on Circuits and Systems for Video Technology,
11(12):1221{1236, 2001.
[50] S. Mallat and F. Falzon. Analysis of Low Bit Rate Image Transform Coding.
IEEE Transactions on Signal Processing, 46(4):1027{1042, 1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45594-
dc.description.abstract近年,拜無線寬頻網路之賜,視訊串流逐漸成為一大眾化的網路應用。不過,由於無線網路的不穩定性,視訊串流的品質可能受到時變通道頻寬的影響而大幅下降。從視訊串流系統架構的角度來看,現有的可適性技術大致可分為codec-based和network-based兩大類技術。在codec-based的技術中,視訊編碼演算法和壓縮參數可根據頻寬的變動而有所改變。而network-based的技術則是利用不同的傳輸方式來適應頻寬的變化。在以往的研究中,大多以兩者各自的特性來設計實驗參數和分析方式。所以在同一個系統中,若同時使用兩種技術,可能無法客觀且正確地分析或預測其結果。因此,為了解決此問題,我們在此論文中提出了一個統一的最佳化架構。利用這個架構,我們能將現有的兩大類技術,分別建構成子串流控制技術和傳輸控制技術的最佳化模型。接著,我們分別討論子串流控制技術和傳輸控制技術各自在時變頻寬下的表現。子串流控制能減少視訊串流在低頻寬時的品質失真,但由於使用基本的傳輸方式,導致頻寬無法做最有效率地使用;另一方面,傳輸控制技術利用可變的傳輸時間或頻率,可得到有效地頻寬利用,然而,當使用單一串流編碼和有限的播放暫存器的雙重影響下,亦無法得到最佳的表現。從實驗結果的分析中可得知,當我們只應用其中一類技術時,兩者都有各自的極限,但事實上如果能同時使用兩種技術,這些缺點可被彼此互補。因此,在論文的最後,我們亦考慮結合子串流控制技術和傳輸控制技術的最佳化可能性。實驗結果顯示在網路時變頻寬下,結合之最佳化的確可使視訊串流品質達到更好的表現。zh_TW
dc.description.abstractIn recent years, thanks for the deployment of wireless broadband networks, video streaming becomes a popular application.
However, due to the unstable characteristics of the wireless network, the fluctuation of channel capacity impacts the quality
of video streaming.
From the perspective of the video streaming system, techniques used for addressing the problem of capacity variation can be classified as codec-based and network-based techniques.
Codec-based techniques adapt to capacity variation by adjusting video encoding algorithms and parameters.
Network-based techniques use different transmission methods to adapt to capacity variation.
Conventionally, these two classes of techniques have been designed and evaluated separately without consideration of each other.
The lack of fair performance comparison of individual techniques makes it difficult to explore their performance
tradeoffs and the optimal strategy for using these two classes of techniques at the same time.
Hence, in this thesis, we proposed a unified optimization framework to address this problem.
Under this framework, we first model codec-based and network-based techniques as sub-stream control and transmission control mechanisms.
We then analyze and compare the performance of sub-stream control and transmission control mechanisms when they are
operated in capacity-varying scenarios.
Sub-stream control mechanisms reduce the distortion when the capacity is low, but they cannot use the capacity efficiently because they use baseline transmission.
Transmission control mechanisms adapt transmission time or frame rate so they can use capacity more efficiently.
However, they cannot perform optimally due to the single sub-stream coding and the limited play-out buffer size.
Finally, we consider the joint optimization of sub-stream control and transmission control and analyze the performance benefits of joint optimization.
The optimization results show that joint optimization of sub-stream control and transmission control indeed has performance benefits in capacity-varying wireless networks.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:29:17Z (GMT). No. of bitstreams: 1
ntu-98-R96942088-1.pdf: 1385679 bytes, checksum: 1d6adcaa87cd47b9c0e65d57c8842c21 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . 1
CHAPTER 2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Video Streaming System . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 System Structure . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Video Quality Evaluation Tool . . . . . . . . . . . . . . . . . 5
2.2 Codec-based Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 MPEG-4 Simple Prole . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Layered Coding (LC) . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Multiple Description Coding (MDC) . . . . . . . . . . . . . . 10
2.3 Network-based Techniques . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Transmission Rate Adaptation . . . . . . . . . . . . . . . . . 11
2.3.2 Frame Rate Adaptation . . . . . . . . . . . . . . . . . . . . . 12
CHAPTER 3 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 A Unied Optimization Framework . . . . . . . . . . . . . . . . . . 13
3.2 Conventional Baseline Mechanism . . . . . . . . . . . . . . . . . . . 16
3.3 Problems of Conventional Baseline Mechanism . . . . . . . . . . . . 17
CHAPTER 4 SUB-STREAM CONTROL MECHANISMS . . . . . 20
4.1 Sub-stream Control with Dependency . . . . . . . . . . . . . . . . . 20
4.1.1 Codec Structure . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Rate-Distortion Model . . . . . . . . . . . . . . . . . . . . . 22
4.1.3 Model Verication . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.4 Optimization for Sub-stream with Dependency . . . . . . . . 26
4.2 Sub-stream Control without Dependency . . . . . . . . . . . . . . . 29
4.2.1 Codec Structure . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Rate-Distortion Model . . . . . . . . . . . . . . . . . . . . . 31
4.2.3 Model Verication . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.4 Optimization for Sub-stream without Dependency . . . . . . 33
4.2.5 Observation of Identical Sub-stream Rate . . . . . . . . . . . 35
4.3 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.1 Rate-Distortion Curves . . . . . . . . . . . . . . . . . . . . . 36
4.3.2 Performance in a Typical Capacity-varying Scenario . . . . . 37
4.3.3 Performance in Random Capacity Scenarios . . . . . . . . . . 39
CHAPTER 5 TRANSMISSION CONTROL MECHANISMS . . . 43
5.1 Transmission Time Control . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.1 Behavior Description . . . . . . . . . . . . . . . . . . . . . . 44
5.1.2 Buer Requirement . . . . . . . . . . . . . . . . . . . . . . . 44
5.1.3 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . 45
5.1.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 45
5.2 Frame Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.1 Behavior Description . . . . . . . . . . . . . . . . . . . . . . 49
5.2.2 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . 49
5.2.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 49
5.3 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.1 Performance in a Typical Capacity-varying Scenario . . . . . 51
5.3.2 Performance in Random Capacity Scenarios . . . . . . . . . . 53
5.3.3 Performance of Transmission Time with Frame Rate Control 57
CHAPTER 6 JOINT OPTIMIZATION . . . . . . . . . . . . . . . . . 60
6.1 Sub-stream with Transmission Time Control . . . . . . . . . . . . . 60
6.2 Sub-stream with Frame Rate Control . . . . . . . . . . . . . . . . . 64
CHAPTER 7 CONCLUSION AND FUTURE WORK . . . . . . . 67
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
dc.language.isoen
dc.subject傳輸控制zh_TW
dc.subject最佳化zh_TW
dc.subject時變頻寬zh_TW
dc.subject視訊串流zh_TW
dc.subject子串流控制zh_TW
dc.subjectvarying-capacityen
dc.subjecttransmission controlen
dc.subjectsub-stream controlen
dc.subjectvideo streamingen
dc.subjectoptimizationen
dc.title串流視訊品質於網路頻寬時變下之最佳化zh_TW
dc.titleOptimizing the Performance of Video Streaming in Wireless Networks with Varying Capacityen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉丙成,周俊廷,魏宏宇
dc.subject.keyword最佳化,時變頻寬,視訊串流,子串流控制,傳輸控制,zh_TW
dc.subject.keywordoptimization,varying-capacity,video streaming,sub-stream control,transmission control,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2009-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved