請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45591
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭真祥(Jen-Shiang Kouh) | |
dc.contributor.author | Sau-Ting Huang | en |
dc.contributor.author | 黃少廷 | zh_TW |
dc.date.accessioned | 2021-06-15T04:29:07Z | - |
dc.date.available | 2012-08-20 | |
dc.date.copyright | 2009-08-20 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-20 | |
dc.identifier.citation | [1] McCormick, M.E. and Bhattacharyya, R., “Drag reduction of a submersible hull by electrolysis,” Naval Engineers Journal, Vol.85, pp.11-16, 1973.
[2] Madavan, N.K., Deutsch, S. and Merkle C.L., “Measurements of Local Skin Friction in a Microbubble-Modified Turbulent Boundary Layer,” J. Fluid Mech., Vol.156, pp.237-256, 1985. [3] Meng, J.C.S., Uhlman, Jr., J.S., “Microbubble Formation and Splitting in a Turbulent Boundary Layer for Turbulence Reduction”, Advances in fluid dynamics (A90-45726 20-34). New York, Springer-Verlag, p. 168-217, 1989. [4] Watanabe, O., et al., “Measurements of Drag Reduction by Microbubbles Using Very Long Ship Models”, J. Soc. Naval Architects of Japan , Vol.183, pp.53-63, 1998. [5] Kodama, Y. et al, “A full-scale air lubrication experiment using a cement carrier”, National Maritime Research Institute, Japan, 2008, [6] 謝志明,“微泡減阻技術在船模上的應用研究”,國立台灣大學碩士論文, 民國九十三年一月, 2004. [7] 林慧祺,“貨櫃船艉部船形幾何設計參數化之研究”,國立台灣大學碩士論文, 民國九十六年六月, 2007. [8] Murakami, Asako., Kawamura, Takafumi., Hinatsu, Munehiko., “Numerical Simulation of Microbubble Drag Reduction of a Full Scale Ship”, 3rd PAAMES and AMEC2008, pp.83~88, 2008. [9] Chau, S. W., “Numerical Investigation of Free-Stream Rudder Characteristics Using a Multi-Block Finite Volume Method”, Ph.D. Thesis, Institut f | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45591 | - |
dc.description.abstract | 本研究主要利用計算流體力學中的二相流方法模擬微泡減阻的現象,其中在貨櫃船船體底部噴入空氣以觀察減阻的效果,將空氣噴口設置於船長方向五個不同位置,再針對各種不同設計方案的計算結果,加以比較分析,以做為微泡噴口位置選用之參考。貨櫃船船型採用台船公司於先前研發計畫中所設計的RD542_2船型,藉助於CFD計算軟體COMET利用在不同含氣率的條件下,計算減阻效果的變化;計算條件採用k-ω紊流模型,在計算時將空氣與水之混合流體以不同含氣率為10%到90%之間在球形艏後緣噴出,以探討含氣率對於減阻效果所產生的影響,其中發現含氣率為10%~20%時,有較佳的減阻效果。接著設計其他四種不同位置之開口,初步觀察在不同開口使用相同含氣流體時,含氣流體之流動軌跡與產生之減阻效果。最後綜合比較三種不同船速、三種不同噴氣速率、三種不同含氣率與四個不同開口彼此之間減阻效果與噴氣量的關係,其中發現開口之噴氣方向垂直向下所產生的減阻效果較開口之噴氣方向偏向船側為佳,且船速較高時可以容許較高含氣流體注入流場並產生較佳的減阻效果。 | zh_TW |
dc.description.abstract | This study conducted simulations of injecting air and water into the flow field around a container ship by two-phase flow method of computational fluid dynamics (CFD). In order to understand behavior of air-water mixed fluid in different flow conditions, many conditions were investigated and analyzed. The influence parameters were taken into account , including injection velocities, void fractions of air , ship speed and injection positions . These results were helpful to determine which position and condition is better for drag reduction.
MBSL k- turbulence model and CSBC RD542_2 model were used to proceed numerical computing . At first , the design condition of void fraction of air were set between 10% to 90% , and inject position were at the end of bulbous bow. It has been shown that the drag reduction rate will decrease when void fraction of air increase and void fraction between 10% to 20% has better reduction rate. Then we used constant air-water ratio fluid (10%) to inject into four other different positions and compared the track of bubble flow with friction reduction rate . At last , we want to observe how the other influence factors can effect friction reduction rate . So the conditions of three different Froude number , three different jetting velocities , three different void fractions of air and four different positions were desighed to compute and compare the results with friction reduction rate. Among these results , we found that the reduction capability was better when the jet direction faced downward ship hull rather then toward hull side. And when ship speed increase , the flow field can allow injecting more air quantity as well as producing higher friction reduction rate. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:29:07Z (GMT). No. of bitstreams: 1 ntu-98-R96525043-1.pdf: 5601447 bytes, checksum: c4a391d2fc8aab5738857d579e2893ff (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 摘 要 III
ABSTRACT IV 目 錄 V 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1.1前言 1 1.2文獻探討 5 1.3動機與目的 11 1.4論文架構 12 第二章 理論基礎 13 2.1統御方程式 13 2.2紊流模型 14 2.3壁函數 16 2.4數值離散方法 18 2.5自由液面計算 20 2.6船殼受力計算 20 2.7平行計算 21 第三章 計算方法與驗證 22 3.1船型尺寸介紹 22 3.2計算網格之建構 23 3.3邊界條件設定 24 3.4網格分布策略 26 3.5計算條件 28 3.6摩擦力驗證 28 第四章 計算結果與分析 32 4.1微泡減阻技術應用於貨櫃船之計算(不考慮浮力) 32 4.1.1計算條件與設定 32 4.1.2計算結果 33 4.2微泡減阻技術應用於貨櫃船之計算(有考慮浮力) 38 4.2.1計算條件 38 4.2.2計算結果 38 4.2.3結果探討 41 4.3不同開口位置之減阻效果計算 42 4.3.1一號開口之結果 43 4.3.2二號開口之結果 44 4.3.3三號開口之計算結果 45 4.3.4四號開口之計算結果 46 4.3.5五號開口之計算結果 48 4.4不同航行速度對微泡減阻之影響 50 4.4.1航速10節( Fn = 0.13 ) 50 4.4.2航速20節( Fn = 0.26 ) 62 4.4.3航速30節( Fn = 0.39 ) 72 4.4.4空氣覆蓋狀況總比較 79 4.5噴氣量與減阻效果之關係 80 4.5.1 Fn = 0.13 之比較結果 80 4.5.2 Fn = 0.26 之比較結果 82 4.5.3 Fn = 0.39 之比較結果 84 第五章 結論 87 參考文獻 89 | |
dc.language.iso | zh-TW | |
dc.title | 微泡減阻方法應用於貨櫃船之數值模擬計算 | zh_TW |
dc.title | Numerical Simulation of Micro-Bubble Drag Reduction on a Container Ship | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡進發(Jing-Fa Tsai),陳柏汎(Po-Fan Chen),陳彥均(Yan-Jun Chen) | |
dc.subject.keyword | 微泡減阻,貨櫃船,數值模擬,二相流, | zh_TW |
dc.subject.keyword | micro-bubble,drag reduction,numerical simulation,CFD, | en |
dc.relation.page | 90 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 5.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。