Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4558
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林淑華
dc.contributor.authorChen-Hsueh Paien
dc.contributor.author白振學zh_TW
dc.date.accessioned2021-05-14T17:43:23Z-
dc.date.available2020-09-25
dc.date.available2021-05-14T17:43:23Z-
dc.date.copyright2015-09-25
dc.date.issued2015
dc.date.submitted2015-08-10
dc.identifier.citationAbreu, J. G., N. I. Ketpura, et al. (2002). 'Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta.' Nat Cell Biol 4(8): 599-604.
Adler, S. G., S. Schwartz, et al. (2010). 'Phase 1 study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria.' Clin J Am Soc Nephrol 5(8): 1420-1428.
Bagley, R. G., C. Rouleau, et al. (2008). 'Human endothelial precursor cells express tumor endothelial marker 1/endosialin/CD248.' Mol Cancer Ther 7(8): 2536-2546.
Baltatzi, M., C. Savopoulos, et al. (2011). 'Role of angiotensin converting enzyme inhibitors and angiotensin receptor blockers in hypertension of chronic kidney disease and renoprotection. Study results.' Hippokratia 15(Suppl 1): 27-32.
Becker, R., M. C. Lenter, et al. (2008). 'Tumor stroma marker endosialin (Tem1) is a binding partner of metastasis-related protein Mac-2 BP/90K.' FASEB J 22(8): 3059-3067.
Belperio, J. A., M. Dy, et al. (2004). 'The role of the Th2 CC chemokine ligand CCL17 in pulmonary fibrosis.' J Immunol 173(7): 4692-4698.
Betsholtz, C., L. Karlsson, et al. (2001). 'Developmental roles of platelet-derived growth factors.' Bioessays 23(6): 494-507.
Bichara, M., A. Attmane-Elakeb, et al. (2006). 'Exploring the role of galectin 3 in kidney function: a genetic approach.' Glycobiology 16(1): 36-45.
Bottinger, E. P. (2007). 'TGF-beta in renal injury and disease.' Semin Nephrol 27(3): 309-320.
Brady, J., J. Neal, et al. (2004). 'Human endosialin (tumor endothelial marker 1) is abundantly expressed in highly malignant and invasive brain tumors.' J Neuropathol Exp Neurol 63(12): 1274-1283.
Burguillos, M. A., M. Svensson, et al. (2015). 'Microglia-Secreted Galectin-3 Acts as a Toll-like Receptor 4 Ligand and Contributes to Microglial Activation.' Cell Rep.
Carey, R. M., Z. Q. Wang, et al. (2000). 'Role of the angiotensin type 2 receptor in the regulation of blood pressure and renal function.' Hypertension 35(1 Pt 2): 155-163.
Carson-Walter, E. B., D. N. Watkins, et al. (2001). 'Cell surface tumor endothelial markers are conserved in mice and humans.' Cancer Res 61(18): 6649-6655.
Castano, A. P., S. L. Lin, et al. (2009). 'Serum amyloid P inhibits fibrosis through Fc gamma R-dependent monocyte-macrophage regulation in vivo.' Sci Transl Med 1(5): 5ra13.
Chang, F. C., W. C. Chiang, et al. (2014). 'Angiopoietin-2-induced arterial stiffness in CKD.' J Am Soc Nephrol 25(6): 1198-1209.
Chau, B. N., C. Xin, et al. (2012). 'MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways.' Sci Transl Med 4(121): 121ra118.
Chen, Y. T., M. S. Tsai, et al. (2012). 'R26R-GR: a Cre-activable dual fluorescent protein reporter mouse.' PLoS One 7(9): e46171.
Christian, S., H. Ahorn, et al. (2001). 'Molecular cloning and characterization of endosialin, a C-type lectin-like cell surface receptor of tumor endothelium.' J Biol Chem 276(10): 7408-7414.
Christian, S., R. Winkler, et al. (2008). 'Endosialin (Tem1) is a marker of tumor-associated myofibroblasts and tumor vessel-associated mural cells.' Am J Pathol 172(2): 486-494.
Chuang, P. Y., M. C. Menon, et al. (2013). 'Molecular targets for treatment of kidney fibrosis.' J Mol Med (Berl) 91(5): 549-559.
Clark, M. C., M. Pang, et al. (2012). 'Galectin-3 binds to CD45 on diffuse large B-cell lymphoma cells to regulate susceptibility to cell death.' Blood 120(23): 4635-4644.
Conway, E. M., M. Van de Wouwer, et al. (2002). 'The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways.' J Exp Med 196(5): 565-577.
Diaz, L. A., Jr., C. M. Coughlin, et al. (2015). 'A First-in-Human Phase I Study of MORAb-004, a Monoclonal Antibody to Endosialin in Patients with Advanced Solid Tumors.' Clin Cancer Res 21(6): 1281-1288.
Duffield, J. S. (2014). 'Cellular and molecular mechanisms in kidney fibrosis.' J Clin Invest 124(6): 2299-2306.
Eddy, A. A. (2005). 'Progression in chronic kidney disease.' Adv Chronic Kidney Dis 12(4): 353-365.
Fassett, R. G., S. K. Venuthurupalli, et al. (2011). 'Biomarkers in chronic kidney disease: a review.' Kidney Int 80(8): 806-821.
Floege, J. and G. Schlieper (2013). 'Chronic kidney disease: How effective and safe are antiplatelet agents in CKD?' Nat Rev Nephrol 9(6): 314-316.
Friedman, S. L., D. Sheppard, et al. (2013). 'Therapy for fibrotic diseases: nearing the starting line.' Sci Transl Med 5(167): 167sr161.
Fujimura, T., Y. Kambayashi, et al. (2014). 'A possible mechanism in the recruitment of eosinophils and Th2 cells through CD163(+) M2 macrophages in the lesional skin of eosinophilic cellulitis.' Eur J Dermatol 24(2): 180-185.
Gong, R., A. Rifai, et al. (2004). 'Hepatocyte growth factor ameliorates renal interstitial inflammation in rat remnant kidney by modulating tubular expression of macrophage chemoattractant protein-1 and RANTES.' J Am Soc Nephrol 15(11): 2868-2881.
Gordan, J. D., J. A. Bertout, et al. (2007). 'HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity.' Cancer Cell 11(4): 335-347.
Greenlee, M. C., S. A. Sullivan, et al. (2008). 'CD93 and related family members: their role in innate immunity.' Curr Drug Targets 9(2): 130-138.
Gunaratnam, L. and J. V. Bonventre (2009). 'HIF in kidney disease and development.' J Am Soc Nephrol 20(9): 1877-1887.
Hardie, D. L., M. J. Baldwin, et al. (2011). 'The stromal cell antigen CD248 (endosialin) is expressed on naive CD8+ human T cells and regulates proliferation.' Immunology 133(3): 288-295.
Henderson, N. C., A. C. Mackinnon, et al. (2008). 'Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis.' Am J Pathol 172(2): 288-298.
Henderson, N. C., A. C. Mackinnon, et al. (2006). 'Galectin-3 regulates myofibroblast activation and hepatic fibrosis.' Proc Natl Acad Sci U S A 103(13): 5060-5065.
Hewitson, T. D. (2009). 'Renal tubulointerstitial fibrosis: common but never simple.' Am J Physiol Renal Physiol 296(6): F1239-1244.
Himmelfarb, J. and K. R. Tuttle (2013). 'New therapies for diabetic kidney disease.' N Engl J Med 369(26): 2549-2550.
Hsu, D. K., R. Y. Yang, et al. (2000). 'Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses.' Am J Pathol 156(3): 1073-1083.
Huang, H. P., C. L. Hong, et al. (2011). 'Gene targeting and expression analysis of mouse Tem1/endosialin using a lacZ reporter.' Gene Expr Patterns 11(5-6): 316-326.
Inoue, T., S. Fujishima, et al. (2004). 'CCL22 and CCL17 in rat radiation pneumonitis and in human idiopathic pulmonary fibrosis.' Eur Respir J 24(1): 49-56.
Jenkins, S. J., D. Ruckerl, et al. (2011). 'Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation.' Science 332(6035): 1284-1288.
Kumar, R., P. J. Tebben, et al. (2012). 'Vitamin D and the kidney.' Arch Biochem Biophys 523(1): 77-86.
Kurts, C., U. Panzer, et al. (2013). 'The immune system and kidney disease: basic concepts and clinical implications.' Nat Rev Immunol 13(10): 738-753.
Lacombe, C., J. L. Da Silva, et al. (1991). 'Erythropoietin: sites of synthesis and regulation of secretion.' Am J Kidney Dis 18(4 Suppl 1): 14-19.
Lan, H. Y. (2011). 'Diverse roles of TGF-beta/Smads in renal fibrosis and inflammation.' Int J Biol Sci 7(7): 1056-1067.
Lee, J., C. Moon, et al. (2009). 'Immunohistochemical localization of galectin-3 in the granulomatous lesions of paratuberculosis-infected bovine intestine.' J Vet Sci 10(3): 177-180.
Lee, S., S. Huen, et al. (2011). 'Distinct macrophage phenotypes contribute to kidney injury and repair.' J Am Soc Nephrol 22(2): 317-326.
Levey, A. S., J. Coresh, et al. (2003). 'National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification.' Ann Intern Med 139(2): 137-147.
Li, R. X., W. H. Yiu, et al. (2015). 'Role of bone morphogenetic protein-7 in renal fibrosis.' Front Physiol 6: 114.
Lichtnekert, J., T. Kawakami, et al. (2013). 'Changes in macrophage phenotype as the immune response evolves.' Curr Opin Pharmacol 13(4): 555-564.
Lin, S. L., A. P. Castano, et al. (2009). 'Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations.' J Immunol 183(10): 6733-6743.
Lin, S. L., F. C. Chang, et al. (2011). 'Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis.' Am J Pathol 178(2): 911-923.
Lin, S. L., T. Kisseleva, et al. (2008). 'Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney.' Am J Pathol 173(6): 1617-1627.
Lin, S. L., B. Li, et al. (2010). 'Macrophage Wnt7b is critical for kidney repair and regeneration.' Proc Natl Acad Sci U S A 107(9): 4194-4199.
Lin, S. L. D., J.S. (2012). 'Macrophages in Kidney Injury and Repair.' Acta Nephrologica 26(2): 45-57.
Liu, F. T., D. K. Hsu, et al. (1995). 'Expression and function of galectin-3, a beta-galactoside-binding lectin, in human monocytes and macrophages.' Am J Pathol 147(4): 1016-1028.
Liu, F. T., R. Y. Yang, et al. (2012). 'Galectins in acute and chronic inflammation.' Ann N Y Acad Sci 1253: 80-91.
Liu, Y. (2006). 'Renal fibrosis: new insights into the pathogenesis and therapeutics.' Kidney Int 69(2): 213-217.
Liu, Y. (2011). 'Cellular and molecular mechanisms of renal fibrosis.' Nat Rev Nephrol 7(12): 684-696.
Liu, Y. and J. Yang (2006). 'Hepatocyte growth factor: new arsenal in the fights against renal fibrosis?' Kidney Int 70(2): 238-240.
Loeffler, I. and G. Wolf (2014). 'Transforming growth factor-beta and the progression of renal disease.' Nephrol Dial Transplant 29 Suppl 1: i37-i45.
MacFadyen, J. R., O. Haworth, et al. (2005). 'Endosialin (TEM1, CD248) is a marker of stromal fibroblasts and is not selectively expressed on tumour endothelium.' FEBS Lett 579(12): 2569-2575.
MacKinnon, A. C., S. L. Farnworth, et al. (2008). 'Regulation of alternative macrophage activation by galectin-3.' J Immunol 180(4): 2650-2658.
Maeda, N., N. Kawada, et al. (2003). 'Stimulation of proliferation of rat hepatic stellate cells by galectin-1 and galectin-3 through different intracellular signaling pathways.' J Biol Chem 278(21): 18938-18944.
Maia, M., A. de Vriese, et al. (2010). 'CD248 and its cytoplasmic domain: a therapeutic target for arthritis.' Arthritis Rheum 62(12): 3595-3606.
Maia, M., A. DeVriese, et al. (2011). 'CD248 facilitates tumor growth via its cytoplasmic domain.' BMC Cancer 11: 162.
Markowska, A. I., K. C. Jefferies, et al. (2011). 'Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells.' J Biol Chem 286(34): 29913-29921.
Mogler, C., M. Wieland, et al. (2015). 'Hepatic stellate cell-expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage.' EMBO Mol Med 7(3): 332-338.
Nanda, A., B. Karim, et al. (2006). 'Tumor endothelial marker 1 (Tem1) functions in the growth and progression of abdominal tumors.' Proc Natl Acad Sci U S A 103(9): 3351-3356.
Naylor, A. J., E. Azzam, et al. (2012). 'The mesenchymal stem cell marker CD248 (endosialin) is a negative regulator of bone formation in mice.' Arthritis Rheum 64(10): 3334-3343.
Naylor, A. J., H. M. McGettrick, et al. (2014). 'A differential role for CD248 (Endosialin) in PDGF-mediated skeletal muscle angiogenesis.' PLoS One 9(9): e107146.
Ohradanova, A., K. Gradin, et al. (2008). 'Hypoxia upregulates expression of human endosialin gene via hypoxia-inducible factor 2.' Br J Cancer 99(8): 1348-1356.
Opavsky, R., P. Haviernik, et al. (2001). 'Molecular characterization of the mouse Tem1/endosialin gene regulated by cell density in vitro and expressed in normal tissues in vivo.' J Biol Chem 276(42): 38795-38807.
Palmer, S. C., J. C. Craig, et al. (2012). 'Benefits and harms of statin therapy for persons with chronic kidney disease: a systematic review and meta-analysis.' Ann Intern Med 157(4): 263-275.
Palmer, S. C., L. Di Micco, et al. (2013). 'Antiplatelet agents for chronic kidney disease.' Cochrane Database Syst Rev 2: CD008834.
Rabinovich, G. A. and M. A. Toscano (2009). 'Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation.' Nat Rev Immunol 9(5): 338-352.
Ren, S. and J. S. Duffield (2013). 'Pericytes in kidney fibrosis.' Curr Opin Nephrol Hypertens 22(4): 471-480.
Rettig, W. J., P. Garin-Chesa, et al. (1992). 'Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer.' Proc Natl Acad Sci U S A 89(22): 10832-10836.
Ricardo, S. D., H. van Goor, et al. (2008). 'Macrophage diversity in renal injury and repair.' J Clin Invest 118(11): 3522-3530.
Robbins, C. S., I. Hilgendorf, et al. (2013). 'Local proliferation dominates lesional macrophage accumulation in atherosclerosis.' Nat Med 19(9): 1166-1172.
Sasaki, S., Q. Bao, et al. (1999). 'Galectin-3 modulates rat mesangial cell proliferation and matrix synthesis during experimental glomerulonephritis induced by anti-Thy1.1 antibodies.' J Pathol 187(4): 481-489.
Sharma, K., J. H. Ix, et al. (2011). 'Pirfenidone for diabetic nephropathy.' J Am Soc Nephrol 22(6): 1144-1151.
Smith, S. W., K. S. Eardley, et al. (2011). 'CD248+ stromal cells are associated with progressive chronic kidney disease.' Kidney Int 80(2): 199-207.
Soma, J., K. Sato, et al. (2006). 'Effect of tranilast in early-stage diabetic nephropathy.' Nephrol Dial Transplant 21(10): 2795-2799.
Soma, J., T. Sugawara, et al. (2002). 'Tranilast slows the progression of advanced diabetic nephropathy.' Nephron 92(3): 693-698.
St Croix, B., C. Rago, et al. (2000). 'Genes expressed in human tumor endothelium.' Science 289(5482): 1197-1202.
Stenvinkel, P. (2010). 'Chronic kidney disease: a public health priority and harbinger of premature cardiovascular disease.' J Intern Med 268(5): 456-467.
Stillman, B. N., D. K. Hsu, et al. (2006). 'Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death.' J Immunol 176(2): 778-789.
Straussman, R., T. Morikawa, et al. (2012). 'Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion.' Nature 487(7408): 500-504.
Suresh Babu, S., Y. Valdez, et al. (2014). 'TGFbeta-mediated suppression of CD248 in non-cancer cells via canonical Smad-dependent signaling pathways is uncoupled in cancer cells.' BMC Cancer 14: 113.
Throckmorton, D. C., A. P. Brogden, et al. (1995). 'PDGF and TGF-beta mediate collagen production by mesangial cells exposed to advanced glycosylation end products.' Kidney Int 48(1): 111-117.
Tomino, Y. (2014). 'Pathogenesis and treatment of chronic kidney disease: a review of our recent basic and clinical data.' Kidney Blood Press Res 39(5): 450-489.
Tomkowicz, B., K. Rybinski, et al. (2007). 'Interaction of endosialin/TEM1 with extracellular matrix proteins mediates cell adhesion and migration.' Proc Natl Acad Sci U S A 104(46): 17965-17970.
Tomkowicz, B., K. Rybinski, et al. (2010). 'Endosialin/TEM-1/CD248 regulates pericyte proliferation through PDGF receptor signaling.' Cancer Biol Ther 9(11): 908-915.
Valdez, Y., M. Maia, et al. (2012). 'CD248: reviewing its role in health and disease.' Curr Drug Targets 13(3): 432-439.
Van de Wouwer, M., D. Collen, et al. (2004). 'Thrombomodulin-protein C-EPCR system: integrated to regulate coagulation and inflammation.' Arterioscler Thromb Vasc Biol 24(8): 1374-1383.
Van Dyken, S. J. and R. M. Locksley (2013). 'Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease.' Annu Rev Immunol 31: 317-343.
Van Gassen, N., E. Van Overmeire, et al. (2015). 'Macrophage dynamics are regulated by local macrophage proliferation and monocyte recruitment in injured pancreas.' Eur J Immunol 45(5): 1482-1493.
Venkatachalam, M. A., K. A. Griffin, et al. (2010). 'Acute kidney injury: a springboard for progression in chronic kidney disease.' Am J Physiol Renal Physiol 298(5): F1078-1094.
Wouters, O. J., D. J. O'Donoghue, et al. (2015). 'Early chronic kidney disease: diagnosis, management and models of care.' Nat Rev Nephrol.
Yanagita, M. (2012). 'Inhibitors/antagonists of TGF-beta system in kidney fibrosis.' Nephrol Dial Transplant 27(10): 3686-3691.
Yata, Y., A. Scanga, et al. (2003). 'DNase I-hypersensitive sites enhance alpha1(I) collagen gene expression in hepatic stellate cells.' Hepatology 37(2): 267-276.
Zeisberg, M., J. Hanai, et al. (2003). 'BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury.' Nat Med 9(7): 964-968.
Zhong, L., X. Wang, et al. (2013). 'The anti-fibrotic effect of bone morphogenic protein-7(BMP-7) on liver fibrosis.' Int J Med Sci 10(4): 441-450.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4558-
dc.description.abstract不同成因的腎臟疾病最終都會導致腎纖維化,它是器官衰竭的預兆,並且反映出過度的發炎以及不當的器官重組。許多的研究利用動物模型證實抑制纖維產生的訊息路徑能有效減緩腎臟纖維化,而這些研究只有少部分能應用到臨床上。儘管器官纖維化有很高的盛行率,目前仍然沒有很好的治療可以抑制纖維化的進程,因此,研究纖維化的機制可以幫助發展新的治療。
Endosialin 中文為內皮唾酸蛋白質,也被稱作腫瘤內皮標記蛋白1 (TEM1) 或者 CD248,它是第一型的穿膜醣蛋白,主要表現在正常及腫瘤的基質細胞。利用實驗室所建立的 LacZ-KI 小鼠,我們發現在出生後大多數器官都會減少Endosialin的表現,只有腎臟仍持續大量表現。主要細胞型包括腎絲球、周細胞及血管周圍的纖維母細胞。最近文獻指出人類慢性腎病患者的腎臟切片中可測得 endosialin會高量表達在肌纖維母細胞,且表現量與腎功能呈反比。文獻已證實腎臟周細胞及血管周圍的纖維母細胞即為造成腎臟纖維化的肌纖維母細胞,截至目前為止, endosialin 在肌纖維母細胞的角色與影響仍然未知。
本論文主要要探討 endosialin與腎臟纖維化以及巨噬細胞轉型作用的關係,實驗主軸是利用 UUO 模式誘導小鼠產生慢性腎病模擬人類疾病。首先在 UUO處理後,可見 Endosialin 大量表現在腎臟的膠原蛋白製造細胞,失去 Endosialin 會減緩纖維化。此外組織的巨噬細胞數目減少,且M2 巨噬細胞比例也較低。進一步分析發現 LacZ-KI小鼠的巨噬細胞分泌較少的CCL17和CCL22。而在體外共同培養系統誘導 M1/M2 轉型模式下,發現相似結果。顯示 endosialin 可能藉由調控巨噬細胞的 M1 及 M2 轉型而促進纖維化。
進一步欲證明周細胞與巨噬細胞可能藉由endosialin 及galectin-3交互作用而造成周細胞的活化及巨噬細胞的型態改變,本論文使用免疫共沉澱方式證實兩者可相互作用。
本論文結論可知當腎臟受損時,損傷的組織會吸引單核細胞浸潤並活化成M1 巨噬細胞。巨噬細胞也會分泌促纖維化因子造成周細胞活化並大量表現endosialin,巨噬細胞也會分泌 galectin-3 與 endosialin 結合並促進膜外基質產生。同時 endosialin 也會透過未知的機制促使 M1巨噬細胞轉型成 M2 細胞,並且製造更多膜外基質,導致不可逆的纖維化。
zh_TW
dc.description.abstractFibrosis is the final common manifestation of a wide variety of kidney diseases and it is a harbinger of organ failure and reflects inadequate resolution of inflammation in response to injury or inappropriate organ remodelling. Many studies targeting key fibrogenic pathways have demonstrated efficacy in mitigating renal fibrosis in experimental models. Only a small fraction of these approaches, however, have been studied in human and even fewer have been successfully translated to clinical use. Despite the prevalence of organ fibrosis, no good therapies directly target the fibrotic process. Thus, understanding the mechanisms of fibrosis in response to injury is pivotal to our development of new therapies to counteract fibrosis.
Endosialin, also known as tumor endothelial marker 1 (TEM1) or CD248, is a type I transmembrane glycoprotein that is expressed in stromal cells in normal tissues and cancers. Using lacZ knock-in (+/KI) mice we have shown that Endosialin expression decreases in most organs but increases and persists in postnatal kidneys, specifically in glomerular mesangial cells and perivascular cells. CD248 has also been identified in normal kidney pericytes and perivascular fibroblasts of mice by specific antibody staining. In human chronic kidney disease (CKD), upregulated expression of Endosialin is shown in myofibroblasts, which is linked to renal survival. Many studies including ours have identified pericytes and perivascular fibroblasts as the major source of precursors of scar-producing myofibroblasts during renal fibrosis. The mechanisms underlying the impact of increased endosialin expression in myofibroblasts, namely activated pericytes, on kidney disease progression is not clear now.
In this study, we investigated the role of endosialin in fibrosis and macrophage phenotype switch by using UUO model to induce CKD in mice. We found that Endosialin is up-regulated in the collagen producing cells in the kidney of mice, and loss of Endosialin attenuated collagen-induced fibrosis. Furthermore, without Endosialin also decreases the numbers of macrophage. Analysed the gene expression pattern in macrophage, the M2 marker, CCL17 and CCL22 were expressed lower in KI/KI mice. In vitro co-culture of M1/M2 macrophage phenotype-switch assay, similar results were detected in macrophage’s CCL17 and CCL22 when culture with KI/KI cells. These results suggest that endosialin promotes the fibrosis though macrophage phenotype regulation.
To further investigate whether the interaction between endosialin and galectin-3 exists and leads to activation of pericytes and pro-fibrotic phenotype switch of recruited macrophages during progressive renal fibrosis. We confirm the interaction between endosialin and galectin-3 by immunoprecipitation.
In summary, monocytes would be recruited and activated to become M1 type macrophages by injury signals. Macrophages will secret cytokines to activate preicytes becoming myofibroblasts. Myofibroblast will highly express endosialin and interact with galectin-3 which is secreted by macrophages and consequently enhance collagen production. In addition, endosialin will promote these M1 type macrophages switch to M2 type through unknown mechanism. These changes will activate more myofibroblast and tissue will become more fibrogenic.
en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:43:23Z (GMT). No. of bitstreams: 1
ntu-104-D97424004-1.pdf: 8920011 bytes, checksum: bc0eb2328877f86db1dd8b4101743ec0 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents總目錄
誌謝……………………………………………………………………………………………………………...........I
中文摘要………………………………………………………………………………………………………........III
英文摘要…………………………………………………………………...................………..V
圖目錄....……………………………………………………………...............…..……..XI
表目錄....…………………………………………………………………............………...XIII
第一章 緒論…………………………………………………………………..............................1
1.1本章概要.…............……………………………………………................................................1
1.2腎臟與慢性腎病.…........................…………………….................................................1
1.3腎臟纖維化.............…............……........……………….................................................3
1.4巨噬細胞與組織修復............……........……………….................................................4
1.5 Galectin-3與慢性腎病...........…….......……………….................................................6
1.6 Endosialin之介紹..........……..........……………..........................................................8
1.6.1 Endosialin的基因與蛋白質結構…....……....................................................8
1.6.2 Endosialin之表達…............................……....................................................9
1.6.3 Endosialin之功能…............................……..................................................10
1.7 慢性腎病的治療..........……..........……………........................................................12
1.8 研究動機......................……..........……………........................................................14
第二章 材料與方法..........……………………………………………..............................................16
2.1實驗動物.…....................................……………………...............................................16
2.2小鼠基因型鑑定.…................……........………………...............................................16
2.2.1小鼠尾巴 DNA萃取…........................……..................................................16
2.2.2聚合酶鏈鎖反應…..............................……..................................................17
2.3小鼠血清及尿液分離以及指標偵測.…....…...............................................17
2.4小鼠慢性病模式.…...........................................…...............................................17
2.5組織檢體處理與石蠟包埋切片.......................…...............................................18
2.5.1腎臟採集固定…..............................……......................................................18
2.5.2石蠟包埋切片…..............................……......................................................18
2.6組織病理染色分析...........................................…...............................................18
2.6.1石蠟切片脫蠟復水.........................…….....................................................18
2.6.2蘇木紫和伊紅染色.........................…….....................................................18
2.6.3 Picosirius red染色..........................…….....................................................19
2.6.4 免疫組織化學染色.........................……....................................................19
2.6.5 免疫螢光染色.................................……....................................................19
2.7 細胞分離.........................................................…...............................................20
2.7.1單顆細胞製備.................................…….....................................................20
2.7.2磁珠分離細胞技術分離巨噬細胞............................................................20
2.7.3流式細胞儀及分選細胞............................................................................20
2.8 細胞培養與誘導實驗......................................…...............................................21
2.8.1肌纖維母細胞培養.........................…….....................................................21
2.8.2 HEK297FT、L929以及RAW264.7細胞培養...........................................21
2.8.3骨髓源性巨噬細胞(BMDMs)培養...........................................................21
2.8.4 M1巨噬細胞誘導轉型試驗.....................................................................21
2.8.5 HEK297FT轉染.............................…….....................................................22
2.9 細胞或組織mRNA 及蛋白質分析...............…................................................22
2.9.1萃取RNA...................................................................................................22
2.9.2反轉錄 RNA及定量PCR分析.................................................................22
2.9.3蛋白質萃取及電泳分析............................................................................23
2.10免疫沉澱 (Immunoprecipitation, IP)...............….........................................23
第三章 實驗結果..............……………………………………………..............................................24
3.1 Endosialin-LacZ KI 小鼠.................................…...............................................25
3.2小鼠慢性腎病模式...........................................…...............................................25
3.3 Endosialin高量表現於膠原蛋白質製造細胞且影響膠原蛋白製造...............25
3.4 Endosialin 剔除並不影響肌纖維母細胞在腎病組織的擴增..........................27
3.5 Endosialin影響巨噬細胞浸潤以及功能...........................................................28
3.6 Endosialin影響巨噬細胞的轉型.......................................................................29
3.7 Endosialin影響巨噬細胞與肌纖維母細胞的交互作用...................................30
第四章 結果討論.....................................…............…………...........................................34
4.1調控Endosialin 之表達.................................….................................................34
4.2 Endosialin下游訊息傳遞與細胞增生...........….................................................35
4.3 Endosialin剔除造成組織內的巨噬細胞減少...................................................36
4.4 Endosialin 與巨噬細胞的轉型.........................................................................37
4.5 Endosialin 與Galectin-3 的結合與功能影響..................................................38
第五章 未來展望.....................................…............…………...........................................39
參考文獻....…………………………………………………………………............................................... 40
圖....…………………………………………………………………........................................................... 52
表....…………………………………………………………………......................................................... 111
附錄....…………………………………………………………………......................................................115
擬發表之論文....…………………………………………………..................................................... 127
圖目錄
圖一、野生型小鼠及 KI/KI 小鼠腎臟組織切片結構…...................................….......... 53
圖二、野生型小鼠及 KI/KI小鼠之腎絲球及細胞組成數目統計.......….................... 55
圖三、野生型小鼠及 KI/KI小鼠之腎功能評估….........................…........................... 57
圖四、單側輸尿管結紮 (UUO) 腎臟以及對照組腎臟之外觀…....................…......... 59
圖五、以LacZ染色以及免疫螢光染色偵測 endosialin 表達之細胞…...................... 61
圖六、Endosialin mRNA 在慢性腎病模式中的表達量……………………………………........ 63
圖七、以 Picosirius Red 染色偵測膠原蛋白在腎臟累積之情形…............................ 65
圖八、膠原蛋白 mRNA在慢性腎病模式中的表達量…...........................…............... 67
圖九、膠原蛋白 mRNA在膠原蛋白製造細胞的表達量….......................…............... 69
圖十、比較野生型及 KI/KI 小鼠在 uIRI 模式中 Endosialin mRNA 的表現........ 71
圖十一、比較野生型及 KI/KI 小鼠在 uIRI 模式中膠原蛋白累積之情形…...........73
圖十二、比較野生型小鼠及 KI/KI 小鼠在慢性腎病模式之肌纖維母細胞….......... 75
圖十三、比較野生型及 KI/KI 小鼠在UUO模式中 Acta2 mRNA 的表現…...........77
圖十四、比較野生型小鼠及 KI/KI 小鼠肌纖維母細胞之增生能力….........….......... 79
圖十五、體外培養野生型小鼠及 KI/KI 小鼠肌纖維母細胞….................................. 81
圖十六、比較野生型小鼠及 KI/KI 小鼠在慢性腎病模式之巨噬細胞數目…..........83
圖十七、比較野生型小鼠及 KI/KI巨噬細胞在M1 基因的表現情形…................... 85
圖十八、比較野生型小鼠及 KI/KI巨噬細胞在M2 基因的表現情形…................... 87
圖十九、流式細胞儀分析野生型小鼠腎臟巨噬細胞之分群…................................... 89
圖二十、流式細胞儀分析 KI/KI 小鼠腎臟巨噬細胞之分群….................................. 91
圖二十一、流式細胞儀分析野生型及 KI/KI 小鼠腎臟巨噬細胞之分群….............. 93
圖二十二、胞外巨噬細胞型態轉型試驗…................................................................... 95
圖二十三、施打anti-CCL17抗體減少膠原蛋白累積之情形…......................….......... 97
圖二十四、分析野生型及 KI/KI 肌纖維母細胞釋放激素之差異….......................... 99
圖二十五、Galectin-3 mRNA 的表現情形….........................….................................. 101
圖二十六、Lgasl3 剔除小鼠之巨噬細胞基因表達情形.........................….............. 103
圖二十七、Endosailin 與 Galectin-3結合….........................…................................... 105
圖二十八、Galectin-3透過endosialin促進膠原蛋白表現…......................….............. 107
圖二十九、Endosialin在纖維化演進過程中的角色….........................….................... 109
表目錄
表一、引子序列.……………………………………………………………………………….....………........... 112
表二、血清腎功能指標.……………………………………………………………….....………............... 113
表三、Cytokine array 結果.…………......…………………………………………….....………............ 114
dc.language.isozh-TW
dc.subject纖維化zh_TW
dc.subjectendosialinzh_TW
dc.subject肌纖維母細胞zh_TW
dc.subjectgalectin-3zh_TW
dc.subject巨噬細胞zh_TW
dc.subjectendosialinen
dc.subjectmyofibroblasten
dc.subjectmacrophageen
dc.subjectfibrosisen
dc.subjectgalectin-3en
dc.title內皮唾酸蛋白質在慢性腎病之角色zh_TW
dc.titleThe role of Endosialin in chronic kindey diseaseen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.oralexamcommittee吳華林,林東燦,林水龍,林淑容,楊雅倩
dc.subject.keyword纖維化,肌纖維母細胞,endosialin,巨噬細胞,galectin-3,zh_TW
dc.subject.keywordfibrosis,myofibroblast,endosialin,macrophage,galectin-3,en
dc.relation.page144
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-08-10
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf8.71 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved