請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4557
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃鵬林(Pung-Ling Huang),杜宜殷(Yi-Yin Do) | |
dc.contributor.author | Hao-Sheng Shu | en |
dc.contributor.author | 徐皓昇 | zh_TW |
dc.date.accessioned | 2021-05-14T17:43:22Z | - |
dc.date.available | 2015-08-28 | |
dc.date.available | 2021-05-14T17:43:22Z | - |
dc.date.copyright | 2015-08-28 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-10 | |
dc.identifier.citation | 汪俏梅、曾廣文. 1997. 苦瓜性別分化的型態與組織化學研究. 浙江農業大學學報 23:149-153. Achard, P., A. Herr, D.C. Baulcombe and N.P. Harberd. 2004. Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357-3365. Akter, P. and M.A. Rahman. 2010. Effect of foliar application of IAA and GA3 on sex expression, yield attributes and yield of bitter gourd (Momordica charantia L.). The Chittagong Univ. J. B. Sci. 5:55-62. Ando, S., Y. Sato, S. Kamachi, and S. Sakai. 2001. Isolation of a MADS-box gene (ERAF17) and correlation of its expression with the induction of formation of female flowers by ethylene in cucumber plants (Cucumis sativus L.). Planta 213:943-52. Ando, S. and S. Sakai. 2002. Isolation of an ethylene-responsive gene (ERAF16) for a putative methyltransferase and correlation of ERAF16 gene expression with female flower formation in cucumber plants (Cucumis sativus). Physiol. Plant. 116:213-222. Argueso, C.T, M. Hansen, and J.J. Kieber. 2007. Regulation of ethylene biosynthesis. J. Plant Growth Regul. 26:92-105. Atsmon, D. and C. Tabbak. 1979. Comparative effects of gibberellin, silver nitrate and aminoethoxyvinyl glycine on sexual tendency and ethylene evolution in the cucumber plant (Cucumis sativus L.). Plant Cell Physiol. 20:1547-1555. Aya, K., M. Ueguchi-Tanaka, M. Kondo, K. Hamada, K. Yano, M. Nishimura, and M. Matsuoka. 2009. Gibberellin modulate anther development in rice via the transcription regulation of GAMYB. Plant Cell 21:1453-1472. Aya, K., Y. Hiwatashi, M. Kojima, H. Sakakibara, M. Ueguchi-Tanaka, M. Hasebe and M. Matsuoka. 2011. The Gibberellin perception system evolved to regulate a pre-existing GAMYB-mediated system during land plant evolution. Nat. Commun. 2:544. Bai, S.L., Y.B. Peng, J.X. Cui, H.T. Gu, L.Y. Xu, Y.Q. Li, Z.H. Xu, and S.N. Bai. 2004. Developmental analyses reveal early arrests of the spore-bearing parts of reproductive organs in unisexual flowers of cucumber (Cucumis sativus L.). Planta 220:230-240. Banerjee, S., and P.S. Basu. 1992. Hormonal regulation of flowering and fruit development: effect of gibberellic acid and ethrel on fruit setting and development of Momordica charantia L. Biol. Plant. 34:63-70. Behera, T.K., S.S. Dey, A.D. Munshi, A.B. Gaikwad, A. Pal, and I. Singh. 2009. Sex inheritance and development of gynoecious hybrids in bitter gourd (Momordica charantia L.). Sci. Hort. 120:130-133. Bisaria, A. K. 1974. The effect of foliar spray of alpha naphthalene acetic acid on the sex expression in Momordica charantia L. Sci. Cult. 40:78-80. Cheng, C., C. Jiao, S.D. Singer, M. Gao, X. Xu, Y. Zhou, Z. Li, Z. Fei, Y. Wang and X. Wang. 2015. Gibberellin-induced changes in the transcriptome of grapevine (Vitis labrusca × V. vinifera) cv. Kyoho flowers. BMC Genomics doi: 10.1186/s12864-015-1324-8. Cheng, H., L. Qin, S. Lee , X. Fu , D.E. Richards, D. Cao, D. Luo, N.P. Harberd, and J. Peng. 2004. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131:1055-1064. Cheng, H., S. Song, L. Xiao, H.M. Soo, Z. Cheng, D. Xie, J. Peng. 2009. Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet. 5:e1000440. doi:10.1371/journal.pgen.1000440. Chini, A., S. Fonseca1, G. Fern aacute;ndez1, B. Adie, J. M. Chico, O. Lorenzo, G. Garc iacute;a-Casado, I. L oacute;pez-Vidriero, F. M. Lozano, M. R. Ponce, J. L. Micol and R. Solano. 2007. The JAZ family of repressors is the missing link in jasmonate signaling. Nature 448:666-671. Davison, P.A., C.N. Hunter and P. Horton. 2002. Overexpression of bold β-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418:203-206. Dill, A., S.G. Thomas, J. Hu, C.M. Steber, and T. Suna. 2008. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell 16:1392-1405. Fang, E.F. and T.B. Ng. 2011. Bitter gourd (Momordica charantia) is a cornucopia of health: a review of its credited antidiabetic, anti-HIV, and antitumor properties. Curr. Mol. Med. 11:417-436. Fleet, C.M, S. Yamaguchi, A. Hanada, H. Kawaide, C.J. David, Y. Kamiya, and T. Sun. 2003. Overexpression of AtCPS and AtKS in Arabidopsis confers increased ent-kaurene production but no increase in bioactive gibberellins. Plant Physiol. 132:830-839. Fleet, C.M. and T. Sun. 2005. A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr. Opin. Plant Biol. 8:77-85. Ghosh, S. and P.S. Basu. 1982. Effect of some growth regulators on sex expression of Momordica charantia L. Sci. Horti. 17:107-122. Ghosh, S. and P.S. Basu. 1983. Hormonal regulation of sex expression in Momordica charantia. Physiol. Plant. 57:301-305. Girek, Z., S. Prodanovic, J. Zdravkovic, T. Zivanovic, M. Ugrinovic and M. Zdravkovic. 2013. The effect of growth regulators on sex expression in melon (Cucumis melo L.). Crop Breed. Appl. Biotechnol. 13: 165-171. Gocal, G.F.W., C.C. Sheldon, F. Gubler, T. Moritz, D.J. Bagnall, C.P. MacMillan, S.F. Li, R.W. Parish, E.S. Dennis, D. Weige, and R.W. King. 2001. GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiol. 127:1682-1693. Grabherr M.G., B.J. Haas, M. Yassour, J.Z. Levin, D.A. Thompson, I. Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Gnirke, N. Rhind, F. di Palma, B.W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman, A. Regev. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnol. 29:644-652. Griffithsa J., K. Muraseb, I. Rieua, R. Zentellab, Z.-L. Zhangb, S. J. Powersa, F. Gonga, A.L. Phillipsa, P. Heddena, T. Sunb, and S.G. Thomasa. 2006. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18:3399-3414. Gu, H.T., D.H. Wang, X. Li, C.X. He, Z.H. Xu, and S.N. Bai. 2011. Characterization of an ethylene-inducible, calcium-dependent nuclease that is differentially expressed in cucumber flower development. New Phytol. 192:590-600. Hou, X., W.-W. Hu, L. Shen, L.Y.C. Lee, Z. Tao, J.-H. Han, and H. Yu. 2008. Global identification of DELLA target genes during Arabidopsis flower development. Plant Physiol. 147:1126-1142. Hou, X., L.Y.C. Lee, K. Xia, Y. Yan, and H. Yu. 2010. DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev. Cell 19:884-894. Hubbard, K.E., N. Nishimura, K. Hitomi, E.D. Getzoff, and J.I. Schroeder. 2010. Genes Dev. 24:1695-1708. Ishiguro, S., A. Kawai-Od, J. Ueda, I. Nishida, and K. Okada. 2001. The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and floweropening in Arabidopsis. Plant Cell 13:2191-2209. Ito, T., K.-H. Ng, T.-S. Lim, H. Yu, and E.M. Meyerowitz. 2007. The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis. Plant Cell 19:3516-3529. Kaneko, M., Y. Inukai, M. Ueguchi-Tanaka, H. Itoh, T. Izawa, Y. Kobayashi, T. Hattori, A. Miyao, H. Hirochika, M. Ashikari, and M.Matsuoka. 2004. Loss-of-function mutations of the rice GAMYB gene impair α-amylase expression in aleurone and flower development. Plant Cell 16:33-44. Katsir, L., H.S. Chung, A.J.K. Koo and G.A. Howe. 2008. Jasmonate signaling: a conserved mechanism of hormone sensing. Curr. Opin. Plant Biol. 11:428-435. Kawaguchi, R. and J. Bailey-Serres. 2005. mRNA sequence features that contribute to translational regulation in Arabidopsis. Nucleic Acids Res. 33:955-965. Kim, J. and D. DellaPenna. 2006. Defining the primary route for lutein synthesis in plants: the role of Arabidopsis carotenoid β-ring hydroxylase CYP97A3. Proc. Natl. Acad. Sci. U.S.A. 103:3474-3479. Knopf, R.R. and T. Trebitsh. 2006. The female-fpecific Cs-ACS1G gene of cucumber. A case of gene duplication and recombination between the non-sex-specific 1-aminocyclopropane-1-carboxylate synthase gene and a branched-chain amino acid transaminase gene. Plant Cell Physiol. 47:1217-1228. Ko, J.-H., S. Yang, and K.-H. Han. 2006. Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J. 47:343-355. Krishnamoorthy, H. N. 1972. Effect of GA3, GA4+7, GA5 and GA9 on the sex expression of Luffa acutangula var. H-2. Cell Physiol. 13:381-383. Lai, C.-P. C.-L. Lee, P.-H. Chen, S.-H. Wu, and C.-C. Yang. 2004. Molecular analyses of the Arabidopsis TUBBY-Like protein gene family. Plant Physiol. 134:1586-1597. Li Z., S. Huang, S. Liu, J. Pan, Z. Zhang, Q. Tao, Q. Shi, Z. Jia, W. Zhang, H. Chen, L. Si, L. Zhu and Run Cai. 2009. Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics 182:1381-1385. Li, Z., S. Wang, Q. Tao, J. Pan, L. Si, Z. Gong, and R. Cai. 2012. A putative positive feedback regulation mechanism in CsACS2 expression suggests a modified model for sex determination in cucumber (Cucumis sativus L.). J. Exp. Bot. 63:4475-4484. Liu, L.Y., H.I. Tseng, C.P. Lin, Y.Y. Lin, Y.H. Huang, C.K. Huang, T.H. Chang, and S.S. Lin. 2014. High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut witches'-broom phytoplasma infection. Plant Cell Physiol. 55:942-957. Malepszy S. and K. Niemirowicz-Szczytt. 1991. Sex determination in cucumber (Cucumis sativus) as a model system for molecular biology. Plant Science 80:39-47. Mandaokar, A., B. Thines, B. Shin, B.M. Lange, G. Choi, Y.J. Koo, Y.J. Yoo, Y.D. Choi, G.Choi, and J. Browse1. 2006. Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J. 46:984-1008. Matsumura, H., N. Miyagi, N. Taniai, M. Fukushima, K. Tarora, A. Shudo, and N. Urasaki. 2013. Mapping of the gynoecy in bitter gourd (Momordica charantia) using RAD-seq analysis. PLoS ONE 9: e87138. doi:10.1371/journal.pone. 0087138. McGinnis, K.M., S.G. Thomas, J.D. Soule, L.C. Strader, J.M. Zale, T. Sun, and C.M. Stebera. 2003. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15:1120-1130. Miao, M., X. Yang, X. Han and K. Wang. 2011. Sugar signalling is involved in the sex expression response of monoecious cucumber to low temperature. J. Exp. Bot. 62:797-804. Mibus, H. and T. Tatlioglu. 2004. Molecular characterization and isolation of the F/f gene for femaleness in cucumber (Cucumis sativus L.). Theor. Appl. Genet. 109:1669-1676. Millar, A.A. and F. Gublera. 2005. The Arabidopsis GAMYB-Like Genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17:705-721. Mitchell, W.D., S.H. Wittwer. 1962. Chemical regulation of flower sex expression and vegetative growth in Cucumis sativus L. Science 136: 880-881. Murase, Kohji., Y, Hirano, T. Sun and T. Hakoshima. 2008. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456:459-463. Nagpal, P., C.M. Ellis, H. Weber, S.E. Ploense, L.S. Barkawi, T.J. Guilfoyle, G. Hagen, J.M. Alonso, J.D. Cohen, E.E. Farmer, J.R. Ecker, and J.W. Reed. 2005. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107-4118. Olszewski, N., T. Sun, and F. Gublerc. 2002. Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:S61-S80. Peng, J. 2009. Gibberellin and jasmonate crosstalk during stamen development. J. Integr. Plant Biol. 2009:51:1064-1070. Pike, L.M. and C.E. Peterson. 1969. Gibberellin A4/A7, for induction of staminate flowers on the gynoecious cucumber (Cucumis sativus L.). Euphytica 18:106-109. Plackett, A.R.G., A.C. Ferguson, S.J. Powers, A. Wanchoo-Kohli1, A.L. Phillips, Z. A. Wilson, P. Hedden and S. G. Thomas. 2013. DELLA activity is required for successful pollen development in the Columbia ecotype of Arabidopsis. New Phytol. 201:825-836. Prakash, G. 1976. Effect of plant growth substances vernalization on sex expression in Momordica charantia L. Indian J. Exp. Biol. 14:360-362. Pysh, L.D., J.W. Wysocka-Diller, C.Camilleri, D. Bouchez, and P.N. Benfey. 1999. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J. 18:111-119. Rahman, M.A., A.N.M. Alamgir and M.A.A. Khan. 1992. Effect of foliar application of IAA, GA3, TTBA and boron on growth, sex expression and yield of bottle gourd (Lagenaria siceraria (Mol.) Standi.). Trop. Agric. Res. 4:54-65. Ram, D., S. Kumar, M. Singh, M. Rai, and G. Kalloo. 2006. Inheritance of gynoecism in bitter gourd (Momordica charantia L.). J. Hered. 97:294-295. Rasco, A.O. and P.S. Castillo. 1990. Flowering patterns and vine pruning effects in bitter gourd (Momordica charantia L.) varieties 'Sta. Rita' and 'Makiling'. Philippine Agriculturist 73:3-4. Ribeiro, D.M., W.L. Ara uacute;jo, A.R. Fernie, J.H. Schippers, and B. Mueller-Roeber. 2012. Translatome and metabolome effects triggered by gibberellins during rosette growth in Arabidopsis. J. Exp. Bot. 63:2769-2786. Rudich, J. and A.H. Halevy. 1974. Involvement of abscisic acid in the regulation of sex expression in the cucumber. Plant Cell Physiol. 15:635-642. Sauter, M., B. Moffatt, M.C. Saechao, R. Hell, and M. Wirtz. 2013. Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochem. J. 451:145-54. Seo, M. and T. Koshiba. 2002. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 7:41-48. Silverstone, A.L., P.Y. Mak, E.C. Martinez, and T.P. Sun. 1997. The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana. Genetics 146:1087-1099. Song, S., T. Qi, H. Huang, Q. Ren, D. Wu, C. Chang, W. Peng, Y. Liu, J. Peng, and D. Xie. 2011. The Jasmonate-ZIM Domain Proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis. Plant Cell 23:1000-1013. Song, S., T. Qi, H. Huang and D. Xie. 2013. Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in Arabidopsis. Mol. Plant 6:1065-1073. Sumpoudlek, W. and P.A. Abella. 1974. Effect of ethrel on sex expression and yield of cucumber. The CLSU. Sci. J. 10: 22-27. Sun, T. 2010. Gibberellin-GID1-DELLA: a pivotal regulatory module for plant groeth and development. Plant Physiol. 154:567-550. Sun, T. 2011. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr. Biol. 21:338-345. Tere, D. 2005. Molecular genetic and physiological studies on the sex-determining M/m and A/a genes in cucumber (Cucumis sativus L.). von der Naturwissenschaflichen Fakulit auml;t der Universit auml;t Hannover zur Erlangung des akademischen Grades eines. The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796-815. Thomas, T.D. 2008. The effect of in vivo and in vitro applications of ethrel and GA3 on sex expression in bitter melon (Momordica charantia L.). Euphytica 164:317-323. Trebitsh, T., J.E. Staub, and S.D. O’Neill. 1997. Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the female (F) locus that enhances female sex expression in cucumber. Plant Physiol. 113:987-995. Tromas, A., S. Paque, V. Stierl eacute;, A.-L. Quettier, P. Muller, E. Lechner, P. Genschik and C. Perrot-Rechenmann. 2013. Auxin-binding protein 1 is a negative regulator of the SCFTIR1/AFB pathway. Nat. Commun. 4:2496. Turner, J.G., C. Ellis, and A. Devoto. 2002. The jasmonate signal pathway. Plant Cell 14:S153-S164. Wan, X.R. and L. Li. Regulation of ABA level and water-stress tolerance of Arabidopsis by ectopic expression of a peanut 9-cis-epoxycarotenoid dioxygenase gene. Biochem. Biophys. Res. Commun. 347:1030-1038. Wang, D.-H., F. Li, Q.-H. Duan, T. Han, Z.-H. Xu, and S.-N. Bai. 2010. Ethylene perception is involved in female cucumber flower development. Plant J. 61:862-872. Wang, F., and X.W. Deng. 2011. Plant ubiquitin-proteasome pathway and its role in gibberellin signaling. Cell Res. 21:1286-1294. Wang, Y.Y. and X. Zhou. 1991. The relationship between the ABA GA4 ratio in shoot apex and sex differentiation of cucumber Cucumis sativus L. Acta Phytophysiol. Sinica 17:356-364. Woodward, A.W. and B. Bartel. 2005. A receptor for auxin. Plant Cell 17: 2425-2429. Wortman, J.R., B.J. Haas, L.I. Hannick, R.K. Smith, Jr., R. Maiti, C.M. Ronning, A.P. Chan, C. Yu, M. Ayele, C.A. Whitelaw, O.R. White, and C.D. Town. 2003. Annotation of the Arabidopsis genome. Plant Physiol. 132:461-468. Wu, T., Z. Qin. X. Zhou, Z. Femg, and Y. Du. 2010. Transcriptome profile analysis of floral sex determination in cucumber. J. Plant Physiol. 167:905-913. Yamagami, T., A. Tsuchisaka, K. Yamada, W.F. Haddon, L.A. Harden, and A. Theologis. 2003. Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J. Biol. Chem. 278: 49102-49112. Yamasaki, S., N. Fujii, and H. Takahashi. 2000. The ethylene-regulated expression of CS-ETR2 and CS-ERS genes in cucumber plants and their possible involvement with sex expression in flowers. Plant Cell Physiol. 41:608-616. Yamasaki, S., N. Fujii, S. Matsuura, H. Mizusawa, and H. Takahashi. 2001. The M locus and ethylene-controlled sex determination in andromonoecious cucumber plants. Plant Cell Physiol. 42:608-619. Yamasaki, S., N. Fujii, and H. Takahashi. 2003. Characterization of ethylene effects on sex determination in cucumber plants. Sex Plant Reprod. 16:103-111. Yu, H., T. Ito, Y. Zhao, J. Peng, P. Kumar, and E.M. Meyerowitz. 2004. Floral homeotic genes are target of gibberellin signaling in flower development. Proc. Natl. Acad. Sci. U.S.A. 101:7827-7832. Zentella, R., Z.-L. Zhang, M. Park, S.G. Thomas, A. Endo, K. Murase, M. Fleet, Y. Jikumaru, E. Nambara, Y. Kamiya, and T. Sun. 2007. Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19:3037-3057. Zhang, Y., B. Liu, S. Yeng, J. An, C. Chen X. Zhang, and H. Ren. 2014a. A cucumber DELLA homolog CsGAIP may inhibit staminate development through transcriptional repression of B class floral homeotic genes. PLos ONE 9:e91804. doi:10.1373/journal/pone.0091804. Zhang, Y., X. Zhang, B. Liu, W. Wang, X. Liu, C. Cheng, X. Liu, S. Yang and H. Ren. 2014b. A GAMYB homologue CsGAMYB1 regulates sex expression of cucumber via an ethylene-independent pathway. J. Exp. Bot. 65:3201-3213. Zhao, Q. and H.-W. Guo. 2011. Paradigms and paradox in the ethylene signaling pathway and interaction network. Biochem. J. 451:145-154. Zhoub, and H. Guoa. 2011. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 108:12539-12544. Zhua, Z., F. Ana, Y. Fenga , P. Lia, L. Xueb, M. Aa , Z. Jianga , J.-M. Kimc, T.K. Toc, W. Lib, X. Zhanga, Q. Yua, Z. Donga, W.-Q. Chena, M. Sekic, J.-M. Zhoub, and H. Guoa. 2011. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 108:12539-12544. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4557 | - |
dc.description.abstract | 苦瓜 (Mormordica charantia L.) 為雌雄同株異花 (monoecious) 作物,外施激勃素 (gibberellin, GA) 可誘導其雌花生成,有別於其他葫蘆科 (Cucurbitaceae) 作物。次世代定序 (next generation sequencing, NGS) 不需序列資訊等,有利於非模式物種 (non-model organism) 之轉錄體 (transcriptome) 定序。外施GA3於苦瓜品種‘月華’六至八葉期苗株,會使花性雄雌比由37降至23,促進雌花生成。經萃取激勃素處理苦瓜苗株之總RNA,以次世代定序技術進行轉錄體分析,組成106,057 條contigs,其中40,854條可被註解 (annotate) 為推定基因 (putative gene),其中8,948個開放解讀框架 (open reading frame) 註解的基因於處理組與對照組中表現量差異達兩倍以上。次世代定序結果顯示,外施激勃素會使苦瓜中激勃素生合成相關基因表現量下降;激勃素受體基因McGID1s、激勃素訊息傳遞基因McXERICOs、乙烯訊息傳遞基因McEIN3/EILs及茉莉酸 (jasmonic acid, JA) 生合成基因McLOX1表現量上升;McDELLAs、ARF6s及ARF8s等基因表現量下降,其中雄蕊 (stamen) 發育相關基因McMYB24.1於激勃素處理表現量較低,可能抑制雄蕊發育;而McXERICOs之表現量增加可能促進離層酸之生合成以改變花性。外施激勃素使ARF6s及ARF8s表現量降低,造成茉莉酸之生合成下降進而抑制McMYB24表現,抑制雄蕊發育;外施激勃素可能藉由誘導McXERICOs之表現進而促進離層酸生合成關鍵基因McNCEDs之表現而累積離層酸,並誘導乙烯生合成共同促進植株雌性化。 | zh_TW |
dc.description.abstract | Bitter gourd (Momordica charantia L.) is one of monoecious species belonging to the family Cucurbitaceae. Unlike other Cucurbitaceae crops, gibberellin (GA) promotes female flower formation in bitter gourd. Next generation sequencing (NGS) provides a platform to analyze transcriptome for non-model organisms. Application of 100 mg·L-1 GA3 on seedlings of bitter gourd ‘Moon Light’ at 6~8-leaf stage reduced the ratio of male to female flower from 37 to 23. RNA isolated from GA-treated bitter gourd was conducted for comparative transcriptome analysis using NGS technology. 40,854 among 106,057 contigs were annotated as putative genes. Approximately 8,948 open reading frame-annotated genes showed a 2-fold differential expression between RNA of control and treatment. Gene expression of McGIDs, McXERICOs, McEIN3/EILs, and McLOX1s were up-regulated and that of McDELLA, McARF6s, and McARF8s were down-regulated after GA treatment. McMYB24.1 showed down regulated following GA application and it might play the role in inhibition of stamen development. Up regulation of McXERIOs might play a crucial role in GA-induced femaleness by promoted ABA accumulation in bitter gourds. McARF6s, and McARF8s were down-regulated after GA application which caused the reduction of jasmonate biosynthesis and repressed the expression level of McMYB24. These might inhibit the stamen development. McXERIOs might be induced following GA treatment which promoted the expression of McNCEDs and ABA accumulation. It also induced thylene biosynthesis in bitter gourds following GA application. These might promote the femaleness level of bitter gourd together. | en |
dc.description.provenance | Made available in DSpace on 2021-05-14T17:43:22Z (GMT). No. of bitstreams: 1 ntu-104-R02628111-1.pdf: 3273508 bytes, checksum: 57e7d6fa42e29eed3410c196c0b014d1 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 目錄 審查委員 I 口試委員會審定書 II 謝誌 III 摘要 IV Abstract V 壹、 前言 1 貳、 前人研究 2 一、 胡瓜及苦瓜花性分化 2 二、 胡瓜花性相關基因 2 (一) 花性主控基因 2 (二) 雌花分化相關基因 3 (三) 雄花分化相關基因 4 三、 苦瓜全雌性基因座gy-1 5 四、 苦瓜花性之誘導 5 (一) 浸種處理誘導改變花性 5 (二) 外施生長調節劑誘導雌花 6 五、 激勃素促進葫蘆科作物雄花之生成 6 六、 激勃素促進苦瓜雌花之生成 6 七、 激勃素訊息傳遞於花器分化之研究 7 (一) 激勃素藉由GAMYB及micro RNA調控花器發育 7 (二) 激勃素抑制花器同源異型基因 8 (三) 激勃素藉由茉莉酸調控雄蕊發育 8 參、 材料與方法 10 一、 植物材料 10 二、 試驗方法 10 (一) 外施荷爾蒙處理 10 (二) 低溫及荷爾蒙浸種處理 10 (三) 苦瓜總RNA萃取 10 (四) DNase I處理 11 (五) RNA電泳品質檢測 11 (六) 轉錄體分析流程 12 (七) 即時定量反轉錄聚合酶連鎖反應 12 肆、 結果 17 一、 外施激勃素對苦瓜花性之影響 17 二、 全轉錄體 (whole-transcriptome) 次世代定序分析 17 三、 激勃素生合成及訊息傳遞相關基因之差異表現 18 四、 乙烯生合成及訊息傳遞相關基因之差異表現 19 五、 離層酸生合成及訊息傳遞相關基因之差異表現 19 六、 植物生長素訊息傳遞相關基因之差異表現 20 七、 茉莉酸訊息傳遞相關基因之差異表現 21 八、 雄蕊發育相關基因之差異表現 22 伍、 討論 62 一、 序列組裝之探討 62 二、 激勃素生合成之負回饋抑制效應 62 三、 激勃素藉由誘導乙烯相關基因調控苦瓜之花性 63 四、 激勃素藉由調控離層酸相關基因改變苦瓜之花性 64 五、 激勃素抑制雄蕊發育相關基因 65 陸、 結語 67 柒、 參考文獻 68 | |
dc.language.iso | zh-TW | |
dc.title | 苦瓜花性之轉錄體分析 | zh_TW |
dc.title | Transcriptomic Study on Flower Sexuality of Momordica charantia L. | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張孟基(Men-Chi Chang),林詩舜(Shih-Shun Lin) | |
dc.subject.keyword | 植物荷爾蒙,激勃素,離層酸,轉錄因子,雄蕊發育, | zh_TW |
dc.subject.keyword | phytohormones,gibberellin,abscisic acid,transcription factor,stamen development, | en |
dc.relation.page | 79 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2015-08-10 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf | 3.2 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。