Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45576
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林晃巖
dc.contributor.authorTing-Yu Youen
dc.contributor.author游婷玉zh_TW
dc.date.accessioned2021-06-15T04:28:11Z-
dc.date.available2012-08-21
dc.date.copyright2009-08-21
dc.date.issued2009
dc.date.submitted2009-08-20
dc.identifier.citation[1]H. Herzig, Micro-optics: Elements, systems and applications: CRC, 1997.
[2]R. Wood, 'On a remarkable case of uneven distribution of light in a diffraction grating spectrum,' Proceedings of the Physical Society of London, vol. 18, pp. 269-275, 1902.
[3]R. H. Ritchie, 'Plasma Losses by Fast Electrons in Thin Films,' Physical Review, vol. 106, p. 874, 1957.
[4]J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, 'Transmission Resonances on Metallic Gratings with Very Narrow Slits,' Physical Review Letters, vol. 83, p. 2845, 1999.
[5]Q. Cao and P. Lalanne, 'Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,' Physical Review Letters, vol. 88, p. 057403, 2002.
[6]D. Crouse, A. Hibbins, and M. Lockyear, 'Tuning the polarization state of enhanced transmission in gratings,' Applied Physics Letters, vol. 92, p. 191105, 2008.
[7]D. Crouse and P. Keshavareddy, 'Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,' Optics Express, vol. 15, pp. 1415-1427, 2007.
[8]D. Crouse, 'Controlling and measuring the polarization state of light using compound gratings and other plasmonic/photonic crystal structures and applications to polarimetric sensors,' 2008, p. 70650G.
[9]D. Crouse, E. Jaquay, A. Maikal, and A. Hibbins, 'Light circulation and weaving in periodically patterned structures,' Physical Review B, vol. 77, p. 195437, 2008.
[10]M. R. Gadsdon, I. R. Hooper, and J. R. Sambles, 'Optical resonances on sub-wavelength silver lamellar gratings,' Opt. Express, vol. 16, pp. 22003-22028, 2008.
[11]C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, 'Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,' Physical Review B (Condensed Matter and Materials Physics), vol. 78, pp. 075406-9, 2008.
[12]M. Jian-Yong, X. Cheng, L. Shi-Jie, Z. Da-Wei, J. Yun-Xia, F. Zheng-Xiu, and S. Jian-Da, 'Surface plasmon resonance transmission filters at 1053nm based on metallic grating with narrow slit,' Chinese Physics B, vol. 18, 2009.
[13]D. Wang, W. Liu, Q. Xiao, and J. Shi, 'Embedded metal-wire nanograting and its application in an optical polarization beam splitter/combiner,' Applied Optics, vol. 47, pp. 312-316, 2008.
[14]W. Liu, Y. Zeng, L. Chen, D. Wang, and Q. Xiao, 'Embedded metal-wire nanograting for a multifunctional optical device,' Applied Optics, vol. 47, pp. 4874-4877, 2008.
[15]Y. Lu, M. Cho, Y. Lee, and J. Rhee, 'Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,' Applied Physics Letters, vol. 93, p. 061102, 2008.
[16]M. Navarro-Cia, D. C. Skigin, M. Beruete, and M. Sorolla, 'Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,' Applied Physics Letters, vol. 94, pp. 091107-3, 2009.
[17]C. Hu and D. Liu, 'Investigation of aluminum wire-grid polarizers for visible wavelengths using rigorous coupled wave analysis,' 2008, p. 713448.
[18]C. Hu and D. Liu, 'A high-performance aluminum wire-grid polarizer for the optical telecommunication applications,' in Passive Components and Fiber-based Devices V, Hangzhou, China, 2008, pp. 71344J-6.
[19]T. Weber, H.-J. Fuchs, H. Schmidt, E.-B. Kley, and A. Tunnermann, 'Wire-grid polarizer for the UV spectral region,' in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics II, San Jose, CA, USA, 2009, pp. 720504-8.
[20]Z. Yang and Y. Lu, 'Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions,' Optics Express, vol. 15, pp. 9510-9519, 2007.
[21]W. Chuang, J. Wang, C. Yang, and Y. Kiang, 'Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,' Applied Physics Letters, vol. 92, p. 133115, 2008.
[22]W. Chuang, J. Wang, C. Yang, and Y. Kiang, 'Transient behaviors of surface plasmon coupling with a light emitter,' Applied Physics Letters, vol. 93, p. 153104, 2008.
[23]W. Chuang, J. Wang, C. Yang, and Y. Kiang, 'Study on the decay mechanisms of surface plasmon coupling features with a light emitter through time-resolved simulations,' Optics Express, vol. 17, pp. 104-116, 2009.
[24]H. Xu and B. Ham, 'Investigation of extraordinary optical transmission and Faraday effect in one-dimensional metallic-magnetic gratings,' Optics Express, vol. 16, pp. 21375-21382, 2008.
[25]Y. Soon Joon and et al., 'Influence of surface roughness on the polarimetric characteristics of a wire-grid grating polarizer,' Applied Optics, vol. 47, p. 5715, 2008.
[26]A. Wei, H. Shieh, and J. Sze, 'Study of Effect of Seam on Wire-Grid Polarizer Efficiency Using Rigorous Coupled-Wave Analysis,' JAPANESE JOURNAL OF APPLIED PHYSICS PART 1 REGULAR PAPERS SHORT NOTES AND REVIEW PAPERS, vol. 46, p. 5379, 2007.
[27]J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, '30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,' Applied Physics Letters, vol. 89, pp. 141105-3, 2006.
[28]D. Cheng, Field and wave electromagnetics: Addison-Wesley Reading, MA, 1983.
[29]C. Kittel and P. McEuen, Introduction to solid state physics: Wiley New York, 1996.
[30]I. Hodgkinson and Q. hong Wu, Birefringent thin films and polarizing elements: World Scientific Pub Co Inc, 1997.
[31]S. Maier, Plasmonics: fundamentals and applications: Springer Verlag, 2007.
[32]P. Yeh, Optical waves in layered media: Wiley New York, 1988.
[33]W. Barnes, A. Dereux, and T. Ebbesen, 'Surface plasmon subwavelength optics,' Nature, vol. 424, pp. 824-830, 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45576-
dc.description.abstract光柵是一種重要的光學元件,在光學上有許多應用。我們可以將其用來當做偏振片、濾波器,也可以將光柵加在發光二極體上,增加光萃取效率。
本論文主要目的在研究次波長金屬光柵的零階繞射效率,使用的軟體是GSolver及Comsol兩套商用軟體。分別對不同結構的次波長金屬光柵之零階繞射效率進行分析,包含光柵週期,光柵高度,光柵寬度,光柵間孔隙材料對繞射效率的影響。首先,先分析TM與TE波正向入射於自由空間中次波長金屬光柵的光學特性,並藉著場圖討論是由何種共振機制造成電磁波能穿透此次波長金屬光柵。接著討論當光柵在基底上時,基底材料對光柵的繞射效率特性的影響。為了更貼近發光二極體結構,分析當光柵下方具有一層極薄金屬導電層時,其繞射效率的改變。
最後,藉由最佳化金屬光柵的幾何結構參數及孔隙間填充材料,我們可以設計出:TM偏極器,在目標波長460nm處,TM波的零階穿透效率達到80%,而TE波的零階穿透效率小於10%。TE偏極器,在目標波長460nm處,TE波的零階穿透效率達到90%,TM波的零階穿透效率小於10%。建立在二氧化矽上的雙色光偏極器,在波長450nm處,TE波零階穿透效率為90%,在波長550nm處,TM波零階穿透效率為90%。具有不同孔隙材料的複合式金屬光柵,在波長460nm時,TM波零階穿透效率為78%,TE波亦可穿透,其零階穿透效率為40%。
zh_TW
dc.description.abstractGrating is an important type of optical element since there are lots of applications. Sub-wavelength gratings can be used as a polarizer or a filter. They can also be added gratings on light emitting diode to increase the light extraction efficiency.
The purpose of this research is to study the 0th diffraction efficiency of the sub-wavelength metallic gratings. Two suites of commercial software “GSolverTM” and “ComsolTM” are used to design the sub-wavelength metallic gratings. We investigate the influences of the 0th diffraction efficiency of the sub-wavelength metallic gratings with different parameters, including grating period, grating height, grating width, and groove material. At first, we analyze the optical properties of the sub-wavelength metallic gratings in free space as the TM and TE waves are normally incident on them. By plotting the field distribution, we discuss what kind of resonant effect leads the electromagnetic wave to propagate through the sub-wavelength metallic grating. Then we put these gratings on certain substrates and discuss the influences on the diffraction efficiency. To discuss sub-wavelength gratings on light emitting diodes, we put a very thin contact metal layer between the grating and n-GaN and then analyze the 0th order diffraction efficiency.
By optimizing the geometrical parameters and the groove material, we can design: for a TM wave polarizer at lambda=460nm, the 0th order transmittance of TM wave is 80% and the 0th order transmittance for TE wave is smaller than 10%. For a TE wave polarizer at lambda=460nm, the 0th order transmittance of TE wave is 90% and the 0th order transmittance for TM wave is smaller than 10%. For a dichroic Mirror on SiO2 substrate, the 0th order transmittance of TE wave at lambda=450nm is 90% and the 0th order transmittance of TM wave at lambda=550nm is 90%. For a compound grating with different groove materials, TM and TE waves can co-propagate through it with a certain ration. We design a compound grating with 78% of the 0th order transmittance of TM wave and 40% of the 0th order transmittance of TE at lambda=460nm.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:28:11Z (GMT). No. of bitstreams: 1
ntu-98-R96941070-1.pdf: 16208049 bytes, checksum: 836ac90db1a70a8ef623791ba52a03c8 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents摘要
Abstract
誌謝
目錄
圖目錄
第 1 章 簡介 1
1.1 光柵 1
1.2 應用 3
1.2.1 偏振片 3
1.2.2 波長濾波器 3
1.2.3 液晶顯示器 4
1.2.4 發光二極體 4
1.3 文獻回顧 6
1.4 動機 7
第 2 章 理論 8
2.1 馬克斯威爾方程 8
2.2 邊界條件 10
2.3 偏振光 12
2.4 杜德模型(Drude Model) 15
2.5 介電常數 16
2.6 Kramers-Kronig 關係式 18
2.7 表面電漿 20
第 3 章 模擬結果 25
3.1 嚴格耦合波理論之光學模擬 25
3.2 自由空間中次波長金屬光柵之偏光特性分析 26
3.2.1 等效介質理論 28
3.2.2 TM 正向入射 28
3.2.3 氧化鋁 47
3.2.4 TE 正向入射 48
3.3 具有金屬導電層的次波長金屬光柵之偏光特性分析 52
3.3.1 TM 正向入射 54
3.3.2 TE 正向入射 57
3.4 次波長金屬光柵在基底上之偏光特性分析 59
3.4.1 TM 正向入射 65
3.4.2 TE 正向入射 66
3.5 次波長金屬光柵在真實LED上之偏光特性分析 68
3.5.1 光偏極器 70
3.6 雙色光之偏光分離器 72
3.7 複合式次波長金屬光柵 75
第 4 章 結論 78
參考文獻 80
dc.language.isozh-TW
dc.subject表面電漿zh_TW
dc.subject偏光調制zh_TW
dc.subject次波長金屬光柵zh_TW
dc.subjectpolarization controlen
dc.subjectsub-wavelength metallic gratingen
dc.subjectsurface plasmonen
dc.title一維次波長金屬光柵在偏光調制的應用zh_TW
dc.titleApplications of Polarization Control by One-Dimensional Sub-Wavelength Metallic Gratingsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃鼎偉,邱奕鵬
dc.subject.keyword次波長金屬光柵,表面電漿,偏光調制,zh_TW
dc.subject.keywordsub-wavelength metallic grating,surface plasmon,polarization control,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2009-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
15.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved