請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45544完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李百祺(Pai-Chi Li) | |
| dc.contributor.author | Shih-Ying Wu | en |
| dc.contributor.author | 吳詩盈 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:26:15Z | - |
| dc.date.available | 2011-09-02 | |
| dc.date.copyright | 2009-09-02 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-20 | |
| dc.identifier.citation | [1] P. -C. Li, Class note of 醫用超音波原理
[2] J. A. Jensen, “Estimation of blood velocities using ultrasound: a signal processing approach,” Cambridge University Press, 1996. [3] http://www.chison.com.cn/ [4] M. D. Fox, “Multiple crossed-beam ultrasound Doppler velocimetry,” IEEE Trans. Son. Ultrason., vol. 25(5), pp. 281-286, 1978. [5] J. R. Overbeck, K. W. Beach and D. E. Strandness jr., “Vector Doppler: accurate measurement of blood velocity in two dimensions,” Ultrasound Med. Biol., vol. 18(1), pp. 19-31, 1992. [6] V. L. Newhouse, E. S. Furgason, G. F. Johnson and D. A. Wolf, “The dependence of ultrasound Doppler bandwidth on beam geometry,” IEEE Trans. Son. Ultrason., vol. 27(2), pp. 50-59, 1980. [7] V. L. Newhouse, D. Censor, T. Vontz, J. A. Cisneros and B. B. Goldberg, “Ultrasound Doppler probing of flows transverse with respect to beam axis,” IEEE Trans. Biomed. Eng., vol. 34(10), pp. 79-789, 1987. [8] M. E. Anderson, “Multi-dimensional velocity estimation with ultrasound using spatial quadrature,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 45(3), pp. 852-861, 1998. [9] J. A. Jensen and P. Munk, “A new method for estimation of velocity vectors,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 45(3), pp. 837-851, 1998. [10] G. E. Trahey, J. W. Allison and O. T. von Ramm, “Angle independent ultrasonic detection of blood flow,” IEEE Trans. Biomed. Eng., vol. 34(12), pp. 965-967, 1987. [11] T. G. Bjastad, “High frame rate ultrasound using parallel beamforming,” Ph.D dissertation, Norwegian University of Science and Technology, 2009. [12] D. P. Shattuck, M. D. Weinshenker, S. W. Smith and O. T. von Ramm, “Explososcan: a parallel processing technique for high speed ultrasound imaging with linear phased array,” J. Acoust. Soc. Am., vol. 75(4), pp. 1273-1282, 1984. [13] O. T. von Ramm, S. W. Smith and H. G. Pavy, “High-speed ultrasound volumetric imaging system—part II: parallel processing and image display,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 38(2), pp. 109-115, 1991. [14] J. A. Jensen, S. I. Nikolov, K. L. Gammelmark and M. H. Pedersen, “Synthetic aperture ultrasound imaging,” Ultrasonics, vol. 44, pp. e5-e15, 2006. [15] M. Karaman, P. -C. Li and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 42(3), pp. 429-442, 1995. [16] G. R. Lockwood, J. R. Talman and S. S. Brunke, “Real-time 3-D ultrasound imaging using sparse synthetic aperture beamforming,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 45(4), pp. 980-988, 1998. [17] T. Misaridis and J. A. Jensen, “Use of modulated excitation signals in medical ultrasound. Part III: high frame rate imaging,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 52(2), pp. 208-219, 2005. [18] J. -Y. Lu, “2D and 3D high frame rate imaging with limited diffraction beams,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 44(4), pp. 839-856, 1997. [19] J. -Y. Lu, “Experimental study of high frame rate imaging with limited diffraction beams,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 45(1), pp. 84-97, 1998. [20] J. A. Jensen, “Field: A Program for Simulating Ultrasound Systems,” Medical & Biological Engineering & Computing, pp. 351-353, Vol. 34, Supplement 1, Part 1, 1996. [21] J. A. Jensen and N. B. Svendsen, “Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 39, pp. 262-267, 1992. [22] J. M. Thijssen, “Ultrasonic speckle formation, analysis and processing applied to tissue characterization,” Pattern Recognition Letters, vol. 24, pp. 659-675, 2003. [23] C. B. Burckhardt, “Speckle in ultrasound B-mode scans,” IEEE Trans. Son. Ultrason., vol. 25(1), pp. 1-6, 1978. [24] R. F. Wagner, S. W. Smith, J. M. Sandrik and H. Lopez, “Statistics of speckle in ultrasound B-scans,” IEEE Transaction on Son. Ultrason., vol. 30(3), pp. 156-163, 1983. [25] R. F. Wagner, M. F. Insana and S. W. Smith, “Fundamental correlation lengths of coherent speckle in medical ultrasonic images,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 35(1), pp. 34-44, 1988. [26] G. E. Trahey, S. W. Smith and O. T. Ramm, “Speckle pattern correlation with lateral aperture translation: experimental results and implications for spatial compounding,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 33(3), pp. 257-264, 1986. [27] G. E. Trahey, S. M. Hubbard and O. T. von Ramm, “Angle independent ultrasonic blood flow detection by frame-to-frame correlation of B-mode images,” Ultrasonics, vol. 26, pp. 271-276, 1988. [28] B. S. Ramamurthy and G. E. Trahey, “Potential and limitations of angle-independent flow detection algorithms using radio-frequency and detected echo signals,” Ultrasonic Imaging, vol. 13, pp. 252-268, 1991. [29] K. W. Ferrara and V. R. Algazi, “A statistical analysis of the received signal from blood during laminar flow,” IEEE Trans. Ultrason., Ferroelec. Freq. Contr., vol. 41(2), pp. 185-198, 1994. [30] B. H. Friemel, L. N. Bohs, K. R. Nightingale and G. E. Trahey, “Speckle decorrelation due to two-dimensional flow gradients,” IEEE Trans. Ultrason., Ferroelec. Freq. Contr., vol. 45(2), pp. 317-327, 1998. [31] P. -C. Li, C. -J. Cheng and C. -K. Yeh, “On velocity estimation using speckle decorrelation,” IEEE Trans. Ultrason., Ferroelec. Freq. Contr., vol. 48(4), pp. 1084-1091, 2001. [32] J. -F. Chen, J. B. Fowlkes, P. L. Carson and J. M. Rubin, “Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test,” International Journal of Imaging Systems and Technology, vol. 8, pp. 38-44, 1997. [33] E. -J. Chen, W. K. Jenkins and W. D. O’Brien, “The impact of various imaging parameters on ultrasonic displacement and velocity estimates,” IEEE Trans. Ultrason., Ferroelec. Freq. Contr., vol. 41(3), pp. 293-301, 1994. [34] E. -J. Chen, W. K. Jenkins and W. D. O’Brien, “Performance of ultrasonic speckle tracking in various tissues,” J. Acoust. Soc. Am., vol. 98(3), pp. 1273-1278, 1995. [35] L. N. Bohs, B. J. Geiman, M. E. Anderson, S. C. Gebhart and G. E. Trahey, “Speckle tracking for multi-dimensional flow estimation,” Ultrasonics, vol. 38, pp. 369-375, 2000. [36] M. O’Donnell, A. R. Skovoroda, B. M. Shapo and S. Y. Emelianov, “Internal displacement and strain imaging using ultrasonic speckle tracking,” IEEE Trans. Ultrason., Ferroelec. Freq. Contr., vol. 41(3), pp. 314-325, 1994. [37] P. -C. Li and W. -N. Lee, “An efficient speckle tracking algorithm for ultrasonic imaging,” Ultrasonic Imaging, vol. 24, pp. 215-228, 2002. [38] L. N. Bohs and G. E. Trahey, “A novel method for angle independent ultrasonic imaging of blood flow and tissue motion,” IEEE Trans. Biomed. Eng., vol. 38(3), pp. 280-286, 1991. [39] B. H. Friemel, L. N. Bohs and G. E. Trahey, “Relative performance of two-dimensional speckle-tracking techniques: normalized correlation, non-normalized correlation and sum-absolute-difference,” IEEE Ultrasonics Symposium, pp. 1481-1484, 1995. [40] L. N. Bohs, B. H. Friemel and G. E. Trahey, “Experimental velocity profiles and volumetric flow via two-dimensional speckle tracking,” Ultrasound Med. Biol., vol. 21(7), pp. 885-898, 1995. [41] L. N. Bohs, B. H. Friemel, B. A. McDermott and G. E. Trahey, “A real time system for quantifying and displaying two-dimensional velocities using ultrasound,” Ultrasound Med. Biol., vol. 19(9), pp. 751-761, 1993. [42] W. F. Walker and G. E. Trahey, “A fundamental limit on the performance of correlation based phase correction and flow estimation techniques” IEEE Trans. Ultrason., Ferroelec. Freq. Contr., vol. 41(5), pp. 644-654, 1994. [43] W. F. Walker and G. E. Trahey, “A fundamental limit on delay estimation using partially correlated speckle signals,” IEEE Trans. Ultrason., Ferroelec. Freq. Contr., vol. 42(2), pp. 301-308, 1995. [44] F. Viola and W. F. Walker, “A comparison of the performance of time-delay estimators in medical ultrasound,” IEEE Trans. Ultrason., Ferroelec. Freq. Contr., vol. 50(4), pp. 392-401, 2003. [45] J. -Y. David, S. A. Jones and D. P. Giddens, “Modern spectral analysis techniques for blood flow velocity and spectral measurements with pulsed Doppler ultrasound,” IEEE Trans. Biomed. Eng., vol. 38(6), pp. 589-596, 1991. [46] C. Goffinet and J. -L. Vanoverschelde, “Speckle tracking echocardiography,” European Cardiovascular Disease, pp. 1-3, 2007. [47] L. Hatle and B. Angelsen, “Doppler ultrasound in cardiology: physical principles and clinical applications,” Lea & Febiger, 1982. [48] T. H. Marwick, C. -M. Yu, and J. -P. Sun, “Myocardial imaging: tissue Doppler and speckle tracking,” Blackwell Publishing Inc., 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45544 | - |
| dc.description.abstract | 高速超音波成像的發展有助於提昇斑點追蹤技術的效能。這兩種技術的結合(簡稱為高速成像斑點追蹤技術)能夠突破傳統量測速度的都普勒方法之角度與最大量測速度限制;此外,由於高速成像能夠縮小斑點追蹤演算法的搜尋範圍,所以高速成像斑點追蹤亦能夠節省運算量。因此,本研究的目的即為檢驗上述的假說並評估高速成像斑點追蹤技術的效能。
主要影響斑點失真與高速成像斑點追蹤技術效能的因素有:影像訊雜比、一致的速度分佈、不一致的速度分佈。因此,我們做了兩種實驗與一種模擬(包含整體性的運動與流體運動)來評估上述因素對高速成像斑點追蹤技術效能的影響。我們採用運算量較低的絕對差和斑點追蹤演算法;高速成像的部分是用平面波成像來實行以避免成像過程中可能造成的掃描效應。 高速成像斑點追蹤技術的效能評估結果顯示:在影像訊雜比夠高的情況下,此技術能達到高準確度的速度估測結果;此外在提高成像率的同時,斑點追蹤技術的運算量也大大降低。因此,有效率、準確度高的高速成像斑點追蹤技術是可行的。 | zh_TW |
| dc.description.abstract | High frame-rate imaging has the potential to improve performance of speckle tracking. Compared with Doppler techniques, with which the maximum detectable velocity is limited and it is flow angle dependent, speckle tracking does not suffer from these limitations. With high frame rate region, it is possible that the computational complexity can be reduced and the estimation accuracy can be improved, both due to the fact that the motion between two high frame-rate images is relatively smaller. It is therefore the purpose of this study to test this hypothesis and to evaluate performance of high frame-rate speckle tracking.
Main factors affecting performance of high frame-rate speckle tracking include image signal-to-noise ratio (SNR), velocity and velocity gradient. Two sets of experiments and one set of simulations (bulk motion and motion with gradient) are conducted to evaluate the influences of the factors mentioned above. Speckle tracking using the sum-absolute-difference algorithm was adopted in this study. Plane-wave excitation was adopted to achieve high frame-rate imaging. The results for this method show that high accuracy can be achieved under sufficiently high SNRs. In addition, computational complexity of speckle tracking is reduced when frame rate is increased. Efficient and accurate high frame-rate speckle tracking is thus feasible. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:26:15Z (GMT). No. of bitstreams: 1 ntu-98-R96945024-1.pdf: 2166064 bytes, checksum: 54a55eaa2af4a31af54dcc20738095a8 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要…………………………………………………………… i
Abstract…………………………………………………………… iii Table of Contents………………………………………………… v List of Figures…………………………………………………… vii List of Tables……………………………………………………… x CHAPTER 1 Introduction……………………………………… 1 1.1 Medical Ultrasound Imaging System……………………… 1 1.2 Development Trends…………………………………………. 2 1.2.1 High Frame-Rate Imaging……………………………. 3 1.2.2 Motion Vector Estimation……………………………. 4 1.3 Motivation and Aim……………………………………… 7 1.4 Thesis Framework……………………………………… 8 CHAPTER 2 High Frame-Rate Ultrasound Imaging...……. 10 2.1 Basic Beamforming……………………………………… 10 2.2 Conventional Focused imaging……………………………. 13 2.3 Multiple Line Transmission……………………………… 14 2.4 Parallel Receive Beamforming………………………… 15 2.4.1 Sparse Synthetic Aperture Imaging………………… 16 2.4.2 Plane-Wave Excitation Imaging…………………… 18 2.5 Imaging Quality of Research……………………………… 19 CHAPTER 3 Principles and Technique for Speckle Tracking 22 3.1 Origin of Speckle………………………………………….. 22 3.2 Speckle Decorrelation……………………………………… 25 3.3 Speckle Tracking Technique.……………………………… 27 3.3.1 Pattern Matching Algorithms………………… 29 3.3.2 Computational Complexity…………………………… 31 3.3.3 Error Analysis..………………………………… 33 3.4 Performance Evaluation Methods.......………………… 36 3.4.1 Tissue-Mimicking Phantom Experiment……… 37 3.4.2 Laminar Flow Simulation……………………… 38 3.4.3 Flow Experiment………………………………… 39 3.5 Displacement Estimation Process………………………… 40 CHAPTER 4 Performance Assessments……………………… 43 4.1 Influence of SNR………………………………………… 43 4.2 Influence of Uniform Velocity………………………… 45 4.3 Influence of Non-uniform Velocity…………………… 52 4.4 Discussion…………………………………………………… 58 4.5 Limitation of High Frame-Rate Speckle Tracking……… 61 CHAPTER 5 Concluding Remarks…………………………….... 63 5.1 Summary……………………………………………………… 63 5.2 Conclusions…………………………………………………… 63 5.3 Future Works………………………………………………… 64 5.3.1 Technique Improvement……………………………… 64 5.3.2 Clinical Applications…………………………………… 64 References…………………………………………………………… 65 | |
| dc.language.iso | en | |
| dc.subject | 高速超音波成像 | zh_TW |
| dc.subject | 斑點追蹤 | zh_TW |
| dc.subject | 角度獨立運動量測 | zh_TW |
| dc.subject | 運動追蹤 | zh_TW |
| dc.subject | Angle-independent motion estimation | en |
| dc.subject | Motion tracking | en |
| dc.subject | High frame-rate ultrasound imaging | en |
| dc.subject | Speckle tracking | en |
| dc.title | 斑點追蹤在高速超音波成像之效能探討 | zh_TW |
| dc.title | Speckle Tracking Performance in High Frame-Rate Ultrasound Imaging | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王世豪,林隆君,葉秩光,沈哲州 | |
| dc.subject.keyword | 斑點追蹤,角度獨立運動量測,運動追蹤,高速超音波成像, | zh_TW |
| dc.subject.keyword | Speckle tracking,Angle-independent motion estimation,Motion tracking,High frame-rate ultrasound imaging, | en |
| dc.relation.page | 71 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
