Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45536Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林清富 | |
| dc.contributor.author | Meng-Yueh Liu | en |
| dc.contributor.author | 劉孟岳 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:25:47Z | - |
| dc.date.available | 2014-10-28 | |
| dc.date.copyright | 2009-10-28 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-20 | |
| dc.identifier.citation | [1] 張正華, 李凌嵐, 葉楚平, 楊平華, and 馬振基, 有機與塑膠太陽能電池, 五南圖書出版公司, (2008).
[2] German Advisory Council on Global Change, (2003) [3] G. Dennler and N. S. Sariciftci, Flexible conjugated polymer-based plastic solar cells: From basics to applications, Proceedings of the Ieee, 93 (2005) 1429. [4] S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, Prentice Hall, (2001). [5] A. Moliton and J. M. Nunzi, How to model the behaviour of organic photovoltaic cells, Polymer International, 55 (2006) 583. [6] A. G. Martin, The path to 25% silicon solar cell efficiency: History of silicon cell evolution, Progress in Photovoltaics: Research and Applications, 17 (2009) 183. [7] J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, 19.8% efficient ``honeycomb' textured multicrystalline and 24.4% monocrystalline silicon solar cells, Applied Physics Letters, 73 (1998) 1991. [8] D. E. Carlson and C. R. Wronski, Amorphous silicon solar cell, Applied Physics Letters, 28 (1976) 671. [9] J. Yang, A. Banerjee, and S. Guha, Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies, Applied Physics Letters, 70 (1997) 2975. [10] D. L. Staebler and C. R. Wronski, OPTICALLY INDUCED CONDUCTIVITY CHANGES IN DISCHARGE-PRODUCED HYDROGENATED AMORPHOUS-SILICON, Journal of Applied Physics, 51 (1980) 3262. [11] H. Fritzsche, PHOTOINDUCED STRUCTURAL-CHANGES ASSOCIATED WITH THE STAEBLER-WRONSKI EFFECT IN HYDROGENATED AMORPHOUS-SILICON, Solid State Communications, 94 (1995) 953. [12] B. Matteo and P. Claudio, The potential of III-V semiconductors as terrestrial photovoltaic devices, Progress in Photovoltaics: Research and Applications, 15 (2007) 51. [13] B. Oregan and M. Gratzel, A LOW-COST, HIGH-EFFICIENCY SOLAR-CELL BASED ON DYE-SENSITIZED COLLOIDAL TIO2 FILMS, Nature, 353 (1991) 737. [14] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Y. Han, Dye-sensitized solar cells with conversion efficiency of 11.1%, Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 45 (2006) L638. [15] M. S. A. Abdou, F. P. Orfino, Y. Son, and S. Holdcroft, Interaction of Oxygen with Conjugated Polymers: Charge Transfer Complex Formation with Poly(3-alkylthiophenes), Journal of the American Chemical Society, 119 (1997) 4518. [16] C. W. Tang, Two-layer organic photovoltaic cell, Applied Physics Letters, 48 (1986) 183. [17] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing, Science, 317 (2007) 222. [18] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Short Communication Solar cell efficiency tables (version 33), Progress in Photovoltaics: Research and Applications, 17 (2009) 85. [19] H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, and A. J. Heeger, SYNTHESIS OF ELECTRICALLY CONDUCTING ORGANIC POLYMERS - HALOGEN DERIVATIVES OF POLYACETYLENE, (CH)X, Journal of the Chemical Society-Chemical Communications, (1977) 578. [20] B. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future, Advanced Materials, 12 (2000) 481. [21] T. Yamamoto, K. Sanechika, and A. Yamamoto, PREPARATION OF THERMOSTABLE AND ELECTRIC-CONDUCTING POLY(2,5-THIENYLENE), Journal of Polymer Science Part C-Polymer Letters, 18 (1980) 9. [22] K. Y. Jen, G. G. Miller, and R. L. Elsenbaumer, HIGHLY CONDUCTING, SOLUBLE, AND ENVIRONMENTALLY-STABLE POLY(3-ALKYLTHIOPHENES), Journal of the Chemical Society-Chemical Communications, (1986) 1346. [23] I. F. Perepichka, D. F. Perepichka, H. Meng, and F. Wudl, Light-emitting polythiophenes, Advanced Materials, 17 (2005) 2281. [24] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells, Nature Materials, 5 (2006) 197. [25] F. Jonas and L. Schrader, Conductive modifications of polymers with polypyrroles and polythiophenes, Synthetic Metals, 41 (1991) 831. [26] D. Chirvase, Z. Chiguvare, M. Knipper, J. Parisi, V. Dyakonov, and J. C. Hummelen, Temperature dependent characteristics of poly(3 hexylthiophene)-fullerene based heterojunction organic solar cells, Journal of Applied Physics, 93 (2003) 3376. [27] V. Dyakonov, Mechanisms controlling the efficiency of polymer solar cells, Applied Physics a-Materials Science & Processing, 79 (2004) 21. [28] G. Dennler, M. C. Scharber, and C. J. Brabec, Polymer-Fullerene Bulk-Heterojunction Solar Cells, Advanced Materials, 21 (2009) 1323. [29] B. C. Thompson and J. M. J. Frechet, Organic photovoltaics - Polymer-fullerene composite solar cells, Angewandte Chemie-International Edition, 47 (2008) 58. [30] F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Effects of postproduction treatment on plastic solar cells, Advanced Functional Materials, 13 (2003) 85. [31] K. Inoue, R. Ulbricht, P. C. Madakasira, W. M. Sampson, S. Lee, J. Gutierrez, J. Ferraris, and A. A. Zakhidov, Temperature and time dependence of heat treatment of RR-P3HT/PCBM solar cell, Synthetic Metals, 154 (2005) 41. [32] Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene, Applied Physics Letters, 86 (2005) 063502. [33] U. Zhokhavets, T. Erb, H. Hoppe, G. Gobsch, and N. S. Sariciftci, Effect of annealing of poly(3-hexylthiophene)/fullerene bulk heterojunction composites on structural and optical properties, Thin Solid Films, 496 (2006) 679. [34] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology, Advanced Functional Materials, 15 (2005) 1617. [35] M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer, Applied Physics Letters, 89 (2006) 143517. [36] D. C. Olson, J. Piris, R. T. Collins, S. E. Shaheen, and D. S. Ginley, Hybrid photovoltaic devices of polymer and ZnO nanofiber composites, Thin Solid Films, 496 (2006) 26. [37] D. C. Olson, Y. J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, and J. W. P. Hsu, Effect of ZnO processing on the pliotovoltage of ZnO/poly(3-hexylthiophene) solar cells, Journal of Physical Chemistry C, 112 (2008) 9544. [38] P. Ravirajan, A. M. Peiro, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant, and J. Nelson, Hybrid Polymer/Zinc Oxide Photovoltaic Devices with Vertically Oriented ZnO Nanorods and an Amphiphilic Molecular Interface Layer, J. Phys. Chem. B, 110 (2006) 7635. [39] S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O'Malley, and A. K. Y. Jen, Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer, Applied Physics Letters, 92 (2008) 253301. [40] A. M. Peiró, P. Ravirajan, K. Govender, D. S. Boyle, P. O'Brien, D. D. C. Bradley, J. Nelson, and J. R. Durrant, 'The effect of zinc oxide nanostructure on the performance of hybrid polymer/zinc oxide solar cells,' in Organic Photovoltaics VI, San Diego, CA, USA, 2005, pp. 593819. [41] T. Kuwabara, H. Sugiyama, T. Yamaguchi, and K. Takahashi, Inverted type bulk-heterojunction organic solar cell using electrodeposited titanium oxide thin films as electron collector electrode, Thin Solid Films, 517 (2009) 3766. [42] C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, Role of tungsten oxide in inverted polymer solar cells, Applied Physics Letters, 94 (2009) 043311. [43] C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO[sub 3] buffer layer, Applied Physics Letters, 93 (2008) 193307. [44] C. S. Kim, S. S. Lee, E. D. Gomez, J. B. Kim, and Y.-L. Loo, Transient photovoltaic behavior of air-stable, inverted organic solar cells with solution-processed electron transport layer, Applied Physics Letters, 94 (2009) 113302. [45] T. Kuwabara, T. Nakayama, K. Uozumi, T. Yamaguchi, and K. Takahashi, Highly durable inverted-type organic solar cell using amorphous titanium oxide as electron collection electrode inserted between ITO and organic layer, Solar Energy Materials and Solar Cells, 92 (2008) 1476. [46] R. Steim, S. A. Choulis, P. Schilinsky, and C. J. Brabec, Interface modification for highly efficient organic photovoltaics, Applied Physics Letters, 92 (2008) [47] C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, and C. J. Brabec, Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact, Applied Physics Letters, 89 (2006) 233517. [48] H. H. Liao, L. M. Chen, Z. Xu, G. Li, and Y. Yang, Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer, Applied Physics Letters, 92 (2008) 173303. [49] B. R. Saunders and M. L. Turner, Nanoparticle-polymer photovoltaic cells, Advances in Colloid and Interface Science, 138 (2008) 1. [50] J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong, and A. J. Heeger, New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer, Advanced Materials, 18 (2006) 572. [51] F.-C. Chen, H.-C. Tseng, and C.-J. Ko, Solvent mixtures for improving device efficiency of polymer photovoltaic devices, Applied Physics Letters, 92 (2008) 103316. [52] Y. Zhao, Z. Xie, Y. Qu, Y. Geng, and L. Wang, Solvent-vapor treatment induced performance enhancement of poly(3-hexylthiophene):methanofullerene bulk-heterojunction photovoltaic cells, Applied Physics Letters, 90 (2007) 043504. [53] L. J. V. d. Pauw, A method of measuring specific resistivity and Hall effect of discs of arbitrary shape, Philips Research Reports, 13 (1985) 1. [54] 謝才淵, 利用退火及電漿製程以提昇氧化鋅薄膜導電度之研究, 國立臺灣大學電機資訊學院光電工程學研究所, 碩士論文, (2008) [55] Y. S. Hsiao, W. T. Whang, C. P. Chen, and Y. C. Chen, High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film for use in ITO-free polymer solar cells, Journal of Materials Chemistry, 18 (2008) 5948. [56] J. Y. Kim, J. H. Jung, D. E. Lee, and J. Joo, Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents, Synthetic Metals, 126 (2002) 311. [57] J. Kim, D. Y. Khang, J. H. Kim, and H. H. Lee, The surface engineering of top electrode in inverted polymer bulk-heterojunction solar cells, Applied Physics Letters, 92 (2008) [58] A. Cravino, P. Schilinsky, and C. J. Brabec, Characterization of organic solar cells: the importance of device layout, Advanced Functional Materials, 17 (2007) 3906. [59] V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Accurate measurement and characterization of organic solar cells, Advanced Functional Materials, 16 (2006) 2016. [60] K. Hong and J.-L. Lee, Inverted Top-Emitting Organic Light-Emitting Diodes Using Transparent Silver Oxide Anode Formed by Oxygen Plasma, Electrochemical and Solid-State Letters, 11 (2008) H29. [61] J.-S. Huang and C.-F. Lin, Influences of ZnO sol-gel thin film characteristics on ZnO nanowire arrays prepared at low temperature using all solution-based processing, Journal of Applied Physics, 103 (2008) 014304. [62] M. Ohyama, H. Kouzuka, and T. Yoko, Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution, Thin Solid Films, 306 (1997) 78. [63] A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rower, and M. D. McGehee, Polymer-based solar cells, Materials Today, 10 (2007) 28. [64] L. Vayssieres, Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions, Advanced Materials, 15 (2003) 464. [65] M. Rusop, K. Uma, T. Soga, and T. Jimbo, Optical and electrical properties of zinc oxide thin films dip-coated of sol-gel method, Surface Review and Letters, 12 (2005) 697. [66] W. I. Park, J. S. Kim, G.-C. Yi, M. H. Bae, and H. J. Lee, Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors, Applied Physics Letters, 85 (2004) 5052. [67] E. von Hauff, V. Dyakonov, and R. Parisi, Study of field effect mobility in PCBM films and P3HT : PCBM blends, Solar Energy Materials and Solar Cells, 87 (2005) 149. [68] W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles, Advanced Functional Materials, 16 (2006) 1112. [69] L. E. Greene, M. Law, B. D. Yuhas, and P. D. Yang, ZnO-TiO2 core-shell nanorod/P3HT solar cells, Journal of Physical Chemistry C, 111 (2007) 18451. [70] D. C. Olson, S. E. Shaheen, R. T. Collins, and D. S. Ginley, The Effect of Atmosphere and ZnO Morphology on the Performance of Hybrid Poly(3-hexylthiophene)/ZnO Nanofiber Photovoltaic Devices, The Journal of Physical Chemistry C, 111 (2007) 16670. [71] M. Lira-Cantu, K. Norrman, J. W. Andreasen, N. Casan-Pastor, and F. C. Krebs, Detrimental effect of inert atmospheres on hybrid solar cells based on semiconductor oxides, Journal of the Electrochemical Society, 154 (2007) B508. [72] M. Lira-Cantu and F. C. Krebs, Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2, Nb2O5, ZnO, CeO2 and CeO2-TiO2): Performance improvement during long-time irradiation, Solar Energy Materials and Solar Cells, 90 (2006) 2076. [73] M. Lira-Cantu, K. Norrman, J. W. Andreasen, and F. C. Krebs, Oxygen Release and Exchange in Niobium Oxide MEHPPV Hybrid Solar Cells, Chemistry of Materials, 18 (2006) 5684. [74] J. Weidmann, T. Dittrich, E. Konstantinova, I. Lauermann, I. Uhlendorf, and F. Koch, Influence of oxygen and water related surface defects on the dye sensitized TiO2 solar cell, Solar Energy Materials and Solar Cells, 56 (1998) 153. [75] M. S. A. Abdou, F. P. Orfino, Z. W. Xie, M. J. Deen, and S. Holdcroft, Reversible charge transfer complexes between molecular oxygen and poly(3-alkylthiophene)s, Advanced Materials, 6 (1994) 838. [76] E. Wahlstrom, E. K. Vestergaard, R. Schaub, A. Ronnau, M. Vestergaard, E. Laegsgaard, I. Stensgaard, and F. Besenbacher, Electron transfer-induced dynamics of oxygen molecules on the TiO2(110) surface, Science, 303 (2004) 511. [77] F. Chaabouni, M. Abaab, and B. Rezig, Metrological characteristics of ZNO oxygen sensor at room temperature, Sensors and Actuators B: Chemical, 100 (2004) 200. [78] A. Brajsa, K. Szaniawska, R. J. Barczynski, L. Murawski, B. Koscielska, A. Vomvas, and K. Pomoni, The photoconductivity of sol-gel derived TiO2 films, Optical Materials, 26 (2004) 151. [79] H. Miyaoka, G. Mizutani, H. Sano, M. Omote, K. Nakatsuji, and F. Komori, Anomalous electro-migration of oxygen vacancies in reduced TiO2, Solid State Communications, 123 (2002) 399. [80] D. M. Hofmann, D. Pfisterer, J. Sann, B. K. Meyer, R. Tena-Zaera, V. Munoz-Sanjose, T. Frank, and G. Pensl, Properties of the oxygen vacancy in ZnO, Applied Physics a-Materials Science & Processing, 88 (2007) 147. [81] W.-Y. Su, J.-S. Huang, and C.-F. Lin, Improving the property of ZnO nanorods using hydrogen peroxide solution, Journal of Crystal Growth, 310 (2008) 2806. [82] S.-H. Kim, H.-K. Kim, S.-W. Jeong, and T.-Y. Seong, Characteristics of Pt Schottky contacts on hydrogen peroxide-treated n-type ZnO(0001) layers, Superlattices and Microstructures, 39 (2006) 211. [83] S.-H. Kim, H.-K. Kim, and T.-Y. Seong, Effect of hydrogen peroxide treatment on the characteristics of Pt Schottky contact on n-type ZnO, Applied Physics Letters, 86 (2005) 112101. [84] U. Zhokhavets, T. Erb, G. Gobsch, M. Al-Ibrahim, and O. Ambacher, Relation between absorption and crystallinity of poly(3-hexylthiophene)/fullerene films for plastic solar cells, Chemical Physics Letters, 418 (2006) 347. [85] N. Sellin and J. S. d. C. Campos, Surface composition analysis of PP films treated by corona discharge, Materials Research, 6 (2003) 163. [86] Y.-M. Chang, W.-F. Su, and L. Wang, Influence of photo-induced degradation on the optoelectronic properties of regioregular poly(3-hexylthiophene), Solar Energy Materials and Solar Cells, 92 (2008) 761. [87] M. P. de Jong, L. J. van Ijzendoorn, and M. J. A. de Voigt, Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes, Applied Physics Letters, 77 (2000) 2255. [88] G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Materials, 4 (2005) 864. [89] A. Hadipour, B. de Boer, J. Wildeman, F. B. Kooistra, J. C. Hummelen, M. G. R. Turbiez, M. M. Wienk, R. A. J. Janssen, and P. W. M. Blom, Solution-processed organic tandem solar cells, Advanced Functional Materials, 16 (2006) 1897. [90] M. Nakamura, L. Sirghi, T. Aoki, and Y. Hatanaka, Study on hydrophilic property of hydro-oxygenated amorphous TiOx : OH thin films, Surface Science, 507 (2002) 778. [91] J. Gilot, M. M. Wienk, and R. A. J. Janssen, Double and triple junction polymer solar cells processed from solution, Applied Physics Letters, 90 (2007) 3. [92] C. Goh, S. R. Scully, and M. D. McGehee, Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells, Journal of Applied Physics, 101 (2007) 12. [93] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Design Rules for Donors in Bulk-Heterojunction Solar Cells-Towards 10% Energy-Conversion Efficiency, Advanced Materials, 18 (2006) 789. [94] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Bulk heterojunction solar cells with internal quantum efficiency approaching 100%, Nature Photonics, 3 (2009) 297. [95] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nature Materials, 6 (2007) 497. [96] V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, Transition metal oxides as the buffer layer for polymer photovoltaic cells, Applied Physics Letters, 88 (2006) 073508. [97] M. D. Irwin, B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells, Proceedings of the National Academy of Sciences of the United States of America, 105 (2008) 2783. [98] Y. H. Jiang, M. Wu, X. J. Wu, Y. M. Sun, and H. B. Yin, Low-temperature hydrothermal synthesis of flower-like ZnO microstructure and nanorod array on nanoporous TiO2 film, Materials Letters, 63 (2009) 275. [99] T. L. Sounart, J. Liu, J. A. Voigt, J. W. P. Hsu, E. D. Spoerke, Z. Tian, and Y. B. Jiang, Sequential nucleation and growth of complex nanostructured films, Advanced Functional Materials, 16 (2006) 335. [100] Z. Wang, X.-f. Qian, J. Yin, and Z.-k. Zhu, Large-Scale Fabrication of Tower-like, Flower-like, and Tube-like ZnO Arrays by a Simple Chemical Solution Route, Langmuir, 20 (2004) 3441. [101] Y. S. Han, L. W. Lin, M. Fuji, and M. Takahashi, A novel one-step solution approach to synthesize tubular ZnO nanostructures, Chemistry Letters, 36 (2007) 1002. [102] B. Q. Cao, X. M. Teng, S. H. Heo, Y. Li, S. O. Cho, G. H. Li, and W. P. Cai, Different ZnO nanostructures fabricated by a seed-layer assisted electrochemical route and their photoluminescence and field emission properties, Journal of Physical Chemistry C, 111 (2007) 2470. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45536 | - |
| dc.description.abstract | 本論文的研究分成兩個部份。第一部份探討有機高分子太陽能電池準確測量轉換效率的方法,並同時針對元件效率的提升提出改進的方法。第二部份探討如何在poly(3-alkylthiophene) (P3HT)/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM)的表面上,使用溶膠凝膠的方法製作出鈦的氧化物薄膜。
針對第一部份,本論文分別製作傳統有機高分子太陽能電池和倒置結構有機高分子太陽能電池。在傳統有機高分子太陽能電池裡,我們特別著重於探討Poly(3,4-ethylene dioxythiophene): poly(styrene sulfonate) (PEDOT:PSS)經由dimethyl sulfoxide (DMSO)處理後對其元件效率的影響。PEDOT:PSS的薄膜導電度因DMSO處理而提高,使得薄膜導電度從0.12 S/cm提升到464.7 S/cm。但是實驗上發現使用了DMSO提升導電度PEDOT:PSS的元件,短路電流竟然高達35.5 mA/cm2。進一步研究發現指出,這些不合理的電流是由於高導電度PEDOT:PSS於有效面積之外不當的收集。因此,本論文証實在傳統有機高分子太陽能電池在測量效率的準確度和高導電度的PEDOT:PSS有關,必需再針對光源加以校正測量才可以得出準確的元件效率。而在倒置結構的有機高分子太陽能電池裡,我們分別製作氧化鋅薄膜和氧化鋅奈米柱兩種不同結構的太陽能電池。實驗上發現使用氧化鋅薄膜的元件和氧化鋅奈米柱的元件,在元件效率上皆因擺放在空氣中而逐漸增加。同時我們也發現到,使用氧化鋅奈米柱並沒有幫助到整體的元件效率提升。在大氣之下,使用氧化鋅薄膜的元件,於第六天達到最高的效率3.6%。而使用氧化鋅奈米柱的元件較氧化鋅薄膜元件較差,於第五天達到最高的效率2.9%。 針對第二部份,本論文利用溶膠凝膠的方式,於P3HT/PCBM的表面旋轉塗佈製作非結晶的鈦氧化物(amorphous titanium oxide, TiOx)薄膜。我們分別混合搭配使用乙二醇單甲醚、異丙醇和正己烷當作溶劑配製TiOx旋塗溶液,實驗上發現不同的溶劑會造成不同表面形態的TiOx薄膜。在這些溶劑選擇當中,使用乙二醇單甲醚和正己烷的混合溶劑所製作出來的TiOx薄膜最為平坦。所以在P3HT/PCBM上使用旋轉塗佈法製作TiOx薄膜時,乙二醇單甲醚和正己烷的混合溶劑是最佳的TiOx旋塗溶液配方。 | zh_TW |
| dc.description.abstract | The research in this thesis can be separted into two parts. In the first part, methods of accurate measurement and improving the power conversion efficinecy of polymer solar cells are discussed. In the second part, sol-gel deposition of amorphous titanium oxide thin film on the poly(3-alkylthiophene) (P3HT)/ [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) substrate is demonstrated.
In the first part, polymer-based organic solar cells with conventional and inverted structure are fabricated. For the converntional structure, the relationship between the performance and dimethyl sulfoxide (DMSO) modified poly(3,4-ethylene dioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) of polymer solar cells is investigated. The PEDOT:PSS is modified by adding DMSO into its aqueous solution, resulting in the enhancement of conductivity from 0.12 S/cm to 464.7 S/cm. However, the device with DMSO modified PEDOT:PSS has a short circuit current density of 35.5 mA/cm2, which is not physically possible. The unreasonable current density results form the improper collection by the extremely condutive DMSO modified PEDOT:PSS. We demonstrate that the performance is strongly related to the employment of modified PEDOT:PSS and it can be corrected by strict definition of illumination area while measuring. For the inverted structure, the polymer solar cells based on the zinc oxide (ZnO) thin film and ZnO nanorod are investigated. Interestingly, we find that the enhancement in the device performance can be achieved by placing the devices in the air. Meanwhile, we also find that the use of ZnO nanorod may be not a rewarding method for enhancing efficiency of the polymer solar cells. With placement and measurement in the air, our inverted polymer solar cells based on ZnO thin film and ZnO nanorod show efficiency of 3.6% at 6th day and 2.9% at 5th day without encapsulation. In the second part, sol-gel preparation of amorphous titanium oxide (TiOx) films with distinct morphological properties on the P3HT/PCBM coated substrate is obtained by solution spin coating. The TiOx film is deposited by three precursors using 2-methoxyethanol, isopropanol and mixture of 2-methoxyethanol and hexane as solvents. We demonstrate that the morphology of TiOx film is related to the employment of dissimilar solvent. TiOx film obtained from mixed 2-methoxyethanol/hexane is a superior choice for the preparation of TiOx on P3HT/PCBM substrate because of its good smoothness. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:25:47Z (GMT). No. of bitstreams: 1 ntu-98-R96941004-1.pdf: 7636740 bytes, checksum: 3353356b5350e76ec2b8195604efa40b (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 摘要 II
Abstract IV 目錄 VI 圖目錄 VIII 表目錄 XIII 第1章:前言 1 1.1 太陽能電池 1 1.1.1 人類的能源需求 1 1.1.1太陽能電池重要性能指標參數[4] 3 1.1.2太陽能電池種類與發展現況 7 1.2 論文導覽 11 第2章:文獻回顧 13 2.1 導電高分子 13 2.1.1 Poly(3-hexylthiophene) (P3HT) 14 2.1.2 Poly(3,4-ethylene dioxythiophene): poly(styrene sulfonate) (PEDOT:PSS)[20] 15 2.2 傳統有機高分子太陽能電池 16 2.2.1 材料介紹 16 2.2.2 工作原理 17 2.2.3 元件結構 19 2.2.4 熱退火技術 20 2.3 倒置有機高分子太陽能電池 22 2.3.1 倒置結構使用氧化鋅 23 2.3.2 倒置結構使用二氧化鈦 24 2.3.3 倒置結構使用碳酸鍶 25 第3章:傳統有機高分子太陽能電池 27 3.1 實驗動機與設計 27 3.2 實驗流程 27 3.2.1 材料製備 27 3.2.2 元件製備 29 3.2.3 太陽能電池測量方式 32 3.2.4 片電阻測量方式[53, 54] 32 3.3 結果與討論 33 3.3.1 高導電度PEDOT:PSS成因 33 3.3.2 高導電度PEDOT:PSS對效率的影響 35 3.3.3 高導電度PEDOT:PSS對測量的影響 36 3.4 結論 46 第4章:倒置結構有機高分子結合氧化鋅太陽能電池 48 4.1 實驗動機與設計 48 4.2 實驗流程 49 4.2.1 材料製備 49 4.2.2 倒置結構有機高分子結合氧化鋅薄膜元件製備 50 4.2.3 倒置結構有機高分子結合氧化鋅奈米柱元件製備 51 4.2.4 太陽能電池測量方式 53 4.2.5 傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectrometer, FTIR) 54 4.3 結果與討論 54 4.3.1 氧化鋅薄膜與氧化鋅奈米柱的微結構 54 4.3.2 氧化鋅薄膜與氧化鋅奈米柱太陽能電池元件性能分析 57 4.3.3 有機高分子結合氧化鋅薄膜和奈米柱元件效率比較 86 4.4 結論 89 第5章:有機高分子薄膜表面及溶劑相容性 91 5.1 實驗動機與設計 91 5.2 實驗流程 92 5.2.1 材料製備 92 5.2.2 試片製備 93 5.2.3 接觸角分析 94 5.3 結果與討論 94 5.3.1 有機薄膜表面親疏水分析 94 5.3.1 非結晶鈦氧化物成膜性分析 97 5.4 結論 102 第6章:結論與未來展望 104 6.1 總論 104 6.2 未來展望 105 參考文獻 111 | |
| dc.language.iso | zh-TW | |
| dc.subject | 測量 | zh_TW |
| dc.subject | ZnO | zh_TW |
| dc.subject | TiOx | zh_TW |
| dc.subject | PEDOT:PSS | zh_TW |
| dc.subject | 有機高分子太陽能電池 | zh_TW |
| dc.subject | P3HT/PCBM | zh_TW |
| dc.subject | TiOx | en |
| dc.subject | polymer-based organic solar cell | en |
| dc.subject | P3HT/PCBM | en |
| dc.subject | PEDOT:PSS | en |
| dc.subject | measurement | en |
| dc.subject | ZnO | en |
| dc.title | 傳統有機高分子太陽能電池的準確測量方法及使用氧化鋅的倒置結構有機高分子太陽能電池之研究 | zh_TW |
| dc.title | Methods of accurate measurement of conventional polymer solar cells and study of zinc oxide based inverted polymer solar cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林唯芳,吳志毅,何志浩 | |
| dc.subject.keyword | 有機高分子太陽能電池,P3HT/PCBM,PEDOT:PSS,測量,ZnO,TiOx, | zh_TW |
| dc.subject.keyword | polymer-based organic solar cell,P3HT/PCBM,PEDOT:PSS,measurement,ZnO,TiOx, | en |
| dc.relation.page | 119 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| Appears in Collections: | 光電工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-98-1.pdf Restricted Access | 7.46 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
