請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45530完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張瑞峰 | |
| dc.contributor.author | Chin-Ho Lin | en |
| dc.contributor.author | 林慶和 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:25:26Z | - |
| dc.date.available | 2016-08-19 | |
| dc.date.copyright | 2011-08-19 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-17 | |
| dc.identifier.citation | [1] C. K. Kuhl, et al., 'MRI for diagnosis of pure ductal carcinoma in situ: a prospective observational study,' Lancet, vol. 370, pp. 485-92, Aug 11 2007.
[2] E. Warner, et al., 'Comparison of breast magnetic resonance imaging, mammography, and ultrasound for surveillance of women at high risk for hereditary breast cancer,' J Clin Oncol, vol. 19, pp. 3524-31, Aug 1 2001. [3] W. Chen, et al., 'Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI,' Med Phys, vol. 33, pp. 2878-87, Aug 2006. [4] W. Chen, et al., 'Computerized interpretation of breast MRI: investigation of enhancement-variance dynamics,' Med Phys, vol. 31, pp. 1076-82, May 2004. [5] P. Kozlowski, et al., 'Combined diffusion-weighted and dynamic contrast-enhanced MRI for prostate cancer diagnosis--correlation with biopsy and histopathology,' Journal of Magnetic Resonance Imaging, vol. 24, pp. 108-13, Jul 2006. [6] P. Hayton, et al., 'Analysis of dynamic MR breast images using a model of contrast enhancement,' Med Image Anal, vol. 1, pp. 207-24, Apr 1997. [7] C. K. Kuhl, et al., 'Dynamic breast MR imaging: Are signal intensity time course data useful for differential diagnosis of enhancing lesions?,' Radiology, vol. 211, pp. 101-110, Apr 1999. [8] P. F. Liu, et al., 'Improved diagnostic accuracy in dynamic contrast enhanced MRI of the breast by combined quantitative and qualitative analysis,' British Journal of Radiology, vol. 71, pp. 501-509, May 1998. [9] W. J. Chen, et al., 'Computerized interpretation of breast MRI: Investigation of enhancement-variance dynamics,' Medical Physics, vol. 31, pp. 1076-1082, May 2004. [10] D. Newell, et al., 'Selection of diagnostic features on breast MRI to differentiate between malignant and benign lesions using computer-aided diagnosis: differences in lesions presenting as mass and non-mass-like enhancement,' European Radiology, vol. 20, pp. 771-781, Apr 2010. [11] K. Nie, et al., 'Quantitative Analysis of Lesion Morphology and Texture Features for Diagnostic Prediction in Breast MRI,' Academic Radiology, vol. 15, pp. 1513-1525, Dec 2008. [12] W. Chen, et al., 'Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images,' Magnetic Resonance in Medicine, vol. 58, pp. 562-571, Sep 2007. [13] K. Holli, et al., 'Characterization of Breast Cancer Types by Texture Analysis of Magnetic Resonance Images,' Academic Radiology, vol. 17, pp. 135-141, Feb 2010. [14] A. Karahaliou, et al., 'Quantifying heterogeneity of lesion uptake in dynamic contrast enhanced MRI for breast cancer diagnosis,' Journal of Instrumentation, vol. 4, pp. -, Jul 2009. [15] A. Karahaliou, et al., 'Assessing heterogeneity of lesion enhancement kinetics in dynamic contrast-enhanced MRI for breast cancer diagnosis,' British Journal of Radiology, vol. 83, pp. 296-306, Apr 2010. [16] R. M. Haralick, et al., 'Textural Features for Image Classification,' Ieee Transactions on Systems Man and Cybernetics, vol. Smc3, pp. 610-621, 1973. [17] W. J. Chen, et al., 'Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI,' Medical Physics, vol. 33, pp. 2878-2887, Aug 2006. [18] P. S. Tofts, 'Modeling tracer kinetics in dynamic Gd-DTPA MR imaging,' Jmri-Journal of Magnetic Resonance Imaging, vol. 7, pp. 91-101, Jan-Feb 1997. [19] P. S. Tofts, et al., 'Estimating kinetic parameters from dynamic contrast-enhanced T-1-weighted MRI of a diffusable tracer: Standardized quantities and symbols,' Journal of Magnetic Resonance Imaging, vol. 10, pp. 223-232, Sep 1999. [20] S. C. Partridge, et al., 'Apparent diffusion coefficient values for discriminating benign and malignant breast MRI lesions: effects of lesion type and size,' AJR Am J Roentgenol, vol. 194, pp. 1664-73, Jun 2010. [21] E. Rubesova, et al., 'Quantitative diffusion imaging in breast cancer: A clinical prospective study,' Journal of Magnetic Resonance Imaging, vol. 24, pp. 319-324, Aug 2006. [22] Y. Paran, et al., 'Water diffusion in the different microenvironments of breast cancer,' NMR Biomed, vol. 17, pp. 170-80, Jun 2004. [23] Y. Guo, et al., 'Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging,' Journal of Magnetic Resonance Imaging, vol. 16, pp. 172-178, Aug 2002. [24] M. Hatakenaka, et al., 'Apparent diffusion coefficients of breast tumors: clinical application,' Magn Reson Med Sci, vol. 7, pp. 23-9, 2008. [25] C. Marini, et al., 'Quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesion,' European Radiology, vol. 17, pp. 2646-2655, Oct 2007. [26] P. Belhomme, et al., 'Generalized region growing operator with optimal scanning: Application to segmentation of breast cancer images,' Journal of Microscopy-Oxford, vol. 186, pp. 41-50, Apr 1997. [27] L. G. Brown, 'A Survey of Image Registration Techniques,' Computing Surveys, vol. 24, pp. 325-376, Dec 1992. [28] E. Morris and L. Liberman, Breast MRI : diagnosis and intervention. New York: Springer, 2005. [29] R. F. Chang, et al., 'Computer-Aided Diagnosis for the Classification of Breast Masses in Automated Whole Breast Ultrasound Images,' Ultrasound in Medicine and Biology, vol. 37, pp. 539-548, Apr 2011. [30] R. Woodhams, et al., 'Diffusion-weighted imaging of malignant breast tumors - The usefulness of apparent diffusion coefficient (ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extension,' Journal of Computer Assisted Tomography, vol. 29, pp. 644-649, Sep-Oct 2005. [31] E. Bribiesca, 'An easy measure of compactness for 2D and 3D shapes,' Pattern Recognition, vol. 41, pp. 543-554, Feb 2008. [32] L. A. Meinel, et al., 'Breast MRI lesion classification: Improved performance of human readers with a backpropagation neural network computer-aided diagnosis (CAD) system,' Journal of Magnetic Resonance Imaging, vol. 25, pp. 89-95, Jan 2007. [33] K. F. Mulchrone and K. R. Choudhury, 'Fitting an ellipse to an arbitrary shape: implications for strain analysis,' Journal of Structural Geology, vol. 26, pp. 143-153, 2004. [34] Q. Zhu and L.-K. Poh, 'A transformation-invariant recursive subdivision method for shape analysis,' in Pattern Recognition, 1988., 9th International Conference on, 1988, pp. 833-835 vol.2. [35] W. J. Chen, et al., 'A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images,' Academic Radiology, vol. 13, pp. 63-72, Jan 2006. [36] A. P. Field, Discovering statistics using SPSS, 3rd ed. Los Angeles: SAGE Publications, 2009. [37] D. Lebihan, et al., 'Mr Imaging of Intravoxel Incoherent Motions - Application to Diffusion and Perfusion in Neurologic Disorders,' Radiology, vol. 161, pp. 401-407, Nov 1986. [38] S. Sinha, et al., 'In vivo diffusion-weighted MRI of the breast: Potential for lesion characterization,' Journal of Magnetic Resonance Imaging, vol. 15, pp. 693-704, Jun 2002. [39] T. Kinoshita, et al., 'Diffusion-weighted half-fourier single-shot turbo spin echo imaging in breast tumors: Differentiation of invasive ductal carcinoma from fibroadenoma,' Journal of Computer Assisted Tomography, vol. 26, pp. 1042-1046, Nov-Dec 2002. [40] Y. Kuroki, et al., 'Diffusion-weighted imaging of breast cancer with the sensitivity encoding technique: analysis of the apparent diffusion coefficient value,' Magnetic Resonance in Medical Sciences, vol. 3, pp. 79-85, Jul 15 2004. [41] Y. Xiao, et al., 'Quantification of the impact of feature selection on the variance of cross-validation error estimation,' EURASIP J Bioinform Syst Biol, p. 16354, 2007. [42] R. Kohavi and G. H. John, 'Wrappers for feature subset selection,' Artificial Intelligence, vol. 97, pp. 273-324, Dec 1997. [43] S. C. Partridge, et al., 'Apparent Diffusion Coefficient Values for Discriminating Benign and Malignant Breast MRI Lesions: Effects of Lesion Type and Size,' American Journal of Roentgenology, vol. 194, pp. 1664-1673, Jun 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45530 | - |
| dc.description.abstract | 乳癌是女性在世界中最常罹患的癌症,而也是女性的主要死因之一。如果能早期發現有類似的症狀發生,就有較高的機會能夠完全治癒。近年來,電腦的輔助診斷不只提供了腫瘤大小、位置的資訊,甚至能進一步的分辨出腫瘤的良惡性。在這篇論文中,動態對比增強的核磁共振影像用來紀錄顯影劑隨著時間的變化所成的像,擴散加權磁振影像則提供了水分子在不同區域組織中的擴散速率。動態對比影像中腫瘤的切割是由一位有經驗的放射科醫生來操作,擴散加權磁振影像中腫瘤的切割則是先經過影像套合處理後,加上相對應動態對比影像中切出的腫瘤區域合併後擷取出。在分析腫瘤良惡性的部分,我們利用改良的fuzzy C-means方式找出能代表腫瘤的動力曲線,接著使用Tofts動力曲線模型來分析,其模型所得的參數為其動力曲線之特徵。此外,三維型態分析包涵了形狀及材質的特徵,而形狀分析有緊實度、邊緣的變化以及與所對應的橢圓模型比對的結果作為三維形狀上的特徵。材質的特徵使用了灰階值共生矩陣對腫瘤進行紋理的分析。另外,由擴散加權磁振影像中所得的特徵提供一個水分子在腫瘤中擴散速率的量化分析並描述腫瘤內組織的不均勻程度。上述所提出的多種特徵為判斷腫瘤良惡性的依據,提供作為實驗統計上的資料。在這個實驗中,總計138個病理檢驗過的腫瘤作為實驗資料,其中包涵54個良性、84個惡性的病例。最後結果能達到準確性91.30% (126/138)、敏感性92.86% (78/84)、專一性88.89% (48/54)及Az值0.9333。 | zh_TW |
| dc.description.abstract | The breast cancer is the most common cancer of women in the world and it is the major cause of the death for women in recent years. However, it is a type of cancer which has an excellent curability if it can be detected in early stage. Recently the computer-aided diagnosis systems can provide radiologists not only the existence information of the tumors but also the lesion classification of malignancy and benignancy. In this paper, the dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is used to detect changes of the contrast agent (CA) concentration over time which are modeled as a result of the exchange of CA molecules between compartments. Furthermore, the diffusion-weighted magnetic resonance imaging (DWI) is used to provide the information about local characteristic of water diffusion of biological tissues. An experienced radiologist indicates the tumor in DCE-MRI and a region growing based algorithm is then applied to segment the tumor. After the manual registration process between DCE-MRI and DWI by a radiologist, the tumor region in corresponding DCE-MRI is mapped into DWI. Then a modified fuzzy c-means clustering is used to identify the most possible malignant kinetic curve of the segmented tumor for analysis. The Tofts pharmacokinetic model is used to fit the kinetic curve of the tumor and the parameters of the model are used as the diagnosis features. Furthermore, the three-dimensional (3-D) morphology features, shape and texture, from DCE-MRI are proposed to improve the diagnosis performance. The shape features including compactness, margin, and ellipsoid fitting could describe the 3-D shape information of the tumor and the 3-D texture features based on the grey level co-occurrence matrix is also used to analyze the lesions. Besides, the apparent diffusion coefficient (ADC) features extracted from DWI give the quantitative measurement for the water diffusion of a lesion are also included in this study. In the experiments, 138 biopsy-proved lesions with 54 benign and 84 malignant used to evaluate the performance of the proposed diagnosis system for breast MRI. Its accuracy, sensitivity, specificity, and Az value are up to 91.30% (126/138), 92.86% (78/84), 88.89% (48/54), and 0.9333, respectively. From the experiment result, the conventional kinetic characteristics features, Tofts features and ADC features could have the better performance. Especially, the ADC features have the best sensitivity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:25:26Z (GMT). No. of bitstreams: 1 ntu-100-R98922099-1.pdf: 641081 bytes, checksum: 8aba5bbdfe364ae6ddc9e3f545cc8e73 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
ACKNOWLEDGEMENTS ii 摘 要 iii ABSTRACT iv TABLE OF CONTENTS vii LIST OF FIGURES viii LIST OF TABLES ix Chapter 1 Introduction 1 Chapter 2 Material 5 2.1 Patients and Lesion Characters 5 2.2 MRI Acquisition 5 Chapter 3 The Proposed DCE-MRI and DWI Tumor Diagnosis Method 8 3.1 Tumor Segmentation 9 3.2 Registration of DCE-MRI and DWI 9 3.3 Feature Extraction 10 3.3.1 Texture Features 11 3.3.2 Shape Features 11 3.3.3 Kinetic Curve Analysis 14 3.3.4 Tofts Model 14 3.3.5 ADC Features 15 Chapter 4 Experimental Results 19 4.1 Classification 19 4.2 Statistics Analysis 19 4.3 Experimental Results 21 4.4 Discussion 23 Chapter 5 Conclusion and Future Works 34 References 36 | |
| dc.language.iso | en | |
| dc.subject | 灰階值共生矩陣 | zh_TW |
| dc.subject | 橢圓 | zh_TW |
| dc.subject | 藥物動力學 | zh_TW |
| dc.subject | 表面擴散係數 | zh_TW |
| dc.subject | 核磁共振影像 | zh_TW |
| dc.subject | 乳房 | zh_TW |
| dc.subject | DCE-MRI | en |
| dc.subject | ADC | en |
| dc.subject | GLCM | en |
| dc.subject | pharmacokinetic | en |
| dc.subject | breast | en |
| dc.subject | DWI | en |
| dc.subject | ellipsoid | en |
| dc.title | 乳房動態對比增強及擴散加權磁振影像的電腦輔助診斷 | zh_TW |
| dc.title | Computer-aided Diagnosis of Breast DCE-MRI and DWI | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃俊升,張允中 | |
| dc.subject.keyword | 核磁共振影像,乳房,藥物動力學,灰階值共生矩陣,橢圓,表面擴散係數, | zh_TW |
| dc.subject.keyword | DCE-MRI,DWI,breast,pharmacokinetic,GLCM,ellipsoid,ADC, | en |
| dc.relation.page | 39 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 626.06 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
