Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45499
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴明陽(Ming-Yang Lai)
dc.contributor.authorWen-Cheng Suen
dc.contributor.author蘇文正zh_TW
dc.date.accessioned2021-06-15T04:23:38Z-
dc.date.available2015-03-12
dc.date.copyright2010-03-12
dc.date.issued2009
dc.date.submitted2009-09-17
dc.identifier.citation[1] Brooks, C.L. and Gu, W. (2003). Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15, 164-71.
[2] Vogelstein, B., Lane, D. and Levine, A.J. (2000). Surfing the p53 network. Nature 408, 307-10.
[3] Green, D.R. and Chipuk, J.E. (2006). p53 and metabolism: Inside the TIGAR. Cell 126, 30-2.
[4] Laurent-Puig, P. and Zucman-Rossi, J. (2006). Genetics of hepatocellular tumors. Oncogene 25, 3778-86.
[5] Li, M., Brooks, C.L., Kon, N. and Gu, W. (2004). A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell 13, 879-86.
[6] Michael, D. and Oren, M. (2002). The p53 and Mdm2 families in cancer. Curr Opin Genet Dev 12, 53-9.
[7] Garcia-Sastre, A. and Biron, C.A. (2006). Type 1 interferons and the virus-host relationship: a lesson in detente. Science 312, 879-82.
[8] Takaoka, A. et al. (2003). Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature 424, 516-23.
[9] Munoz-Fontela, C., Macip, S., Martinez-Sobrido, L., Brown, L., Ashour, J., Garcia-Sastre, A., Lee, S.W. and Aaronson, S.A. (2008). Transcriptional role of p53 in interferon-mediated antiviral immunity. J Exp Med 205, 1929-38.
[10] Warburg, O. (1956). On respiratory impairment in cancer cells. Science 124, 269-70.
[11] Matoba, S. et al. (2006). p53 regulates mitochondrial respiration. Science 312, 1650-3.
[12] Assaily, W. and Benchimol, S. (2006). Differential utilization of two ATP-generating pathways is regulated by p53. Cancer Cell 10, 4-6.
[13] Feng, Z., Zhang, H., Levine, A.J. and Jin, S. (2005). The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci U S A 102, 8204-9.
[14] Bensaad, K., Tsuruta, A., Selak, M.A., Vidal, M.N., Nakano, K., Bartrons, R., Gottlieb, E. and Vousden, K.H. (2006). TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107-20.
[15] Liu, Y., Bohn, S.A. and Sherley, J.L. (1998). Inosine-5'-monophosphate dehydrogenase is a rate-determining factor for p53-dependent growth regulation. Mol Biol Cell 9, 15-28.
[16] Castedo, M. et al. (2001). Human immunodeficiency virus 1 envelope glycoprotein complex-induced apoptosis involves mammalian target of rapamycin/FKBP12-rapamycin-associated protein-mediated p53 phosphorylation. J Exp Med 194, 1097-110.
[17] Lee, C.H., Inoki, K., Karbowniczek, M., Petroulakis, E., Sonenberg, N., Henske, E.P. and Guan, K.L. (2007). Constitutive mTOR activation in TSC mutants sensitizes cells to energy starvation and genomic damage via p53. EMBO J 26, 4812-23.
[18] Sabatini, D.M. (2006). mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 6, 729-34.
[19] Kim, D.H., Sarbassov, D.D., Ali, S.M., King, J.E., Latek, R.R., Erdjument-Bromage, H., Tempst, P. and Sabatini, D.M. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163-75.
[20] Sarbassov, D.D., Guertin, D.A., Ali, S.M. and Sabatini, D.M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098-101.
[21] Inoki, K., Li, Y., Zhu, T., Wu, J. and Guan, K.L. (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4, 648-57.
[22] Vander Haar, E., Lee, S.I., Bandhakavi, S., Griffin, T.J. and Kim, D.H. (2007). Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9, 316-23.
[23] Hardie, D.G. (2004). The AMP-activated protein kinase pathway--new players upstream and downstream. J Cell Sci 117, 5479-87.
[24] Gwinn, D.M., Shackelford, D.B., Egan, D.F., Mihaylova, M.M., Mery, A., Vasquez, D.S., Turk, B.E. and Shaw, R.J. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30, 214-26.
[25] Parker, W.B. (2005). Metabolism and antiviral activity of ribavirin. Virus Res 107, 165-71.
[26] Sidwell, R.W., Robins, R.K. and Hillyard, I.W. (1979). Ribavirin: an antiviral agent. Pharmacol Ther 6, 123-46.
[27] Pawlotsky, J.M., Dahari, H., Neumann, A.U., Hezode, C., Germanidis, G., Lonjon, I., Castera, L. and Dhumeaux, D. (2004). Antiviral action of ribavirin in chronic hepatitis C. Gastroenterology 126, 703-14.
[28] Lai, M.Y., Kao, J.H., Yang, P.M., Wang, J.T., Chen, P.J., Chan, K.W., Chu, J.S. and Chen, D.S. (1996). Long-term efficacy of ribavirin plus interferon alfa in the treatment of chronic hepatitis C. Gastroenterology 111, 1307-12.
[29] Fried, M.W. et al. (2002). Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 347, 975-82.
[30] Manns, M.P. et al. (2001). Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 358, 958-65.
[31] Feld, J.J. and Hoofnagle, J.H. (2005). Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature 436, 967-72.
[32] Liu, W.L., Su, W.C., Cheng, C.W., Hwang, L.H., Wang, C.C., Chen, H.L., Chen, D.S. and Lai, M.Y. (2007). Ribavirin Up-Regulates the Activity of Double-Stranded RNA-Activated Protein Kinase and Enhances the Action of Interferon- alpha against Hepatitis C Virus. J Infect Dis 196, 425-34.
[33] Kudchodkar, S.B., Yu, Y., Maguire, T.G. and Alwine, J.C. (2006). Human cytomegalovirus infection alters the substrate specificities and rapamycin sensitivities of raptor- and rictor-containing complexes. Proc Natl Acad Sci U S A 103, 14182-7.
[34] Tsai, M.F. et al. (2006). A new tumor suppressor DnaJ-like heat shock protein, HLJ1, and survival of patients with non-small-cell lung carcinoma. J Natl Cancer Inst 98, 825-38.
[35] Treier, M., Staszewski, L.M. and Bohmann, D. (1994). Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell 78, 787-98.
[36] Grandvaux, N., Servant, M.J., tenOever, B., Sen, G.C., Balachandran, S., Barber, G.N., Lin, R. and Hiscott, J. (2002). Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes. J Virol 76, 5532-9.
[37] Fang, C., Srivastava, P. and Lin, C.C. (2003). Effect of ribavirin, levovirin and viramidine on liver toxicological gene expression in rats. J Appl Toxicol 23, 453-9.
[38] Watson, J. (2002). Prospects for hepatitis C virus therapeutics: levovirin and viramidine as improved derivatives of ribavirin. Curr Opin Investig Drugs 3, 680-3.
[39] Gudkov, A.V. and Komarova, E.A. (2003). The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer 3, 117-29.
[40] Lavin, M.F. and Gueven, N. (2006). The complexity of p53 stabilization and activation. Cell Death Differ 13, 941-50.
[41] Bode, A.M. and Dong, Z. (2004). Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4, 793-805.
[42] Jones, R.G., Plas, D.R., Kubek, S., Buzzai, M., Mu, J., Xu, Y., Birnbaum, M.J. and Thompson, C.B. (2005). AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18, 283-93.
[43] Toledo, F. and Wahl, G.M. (2006). Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6, 909-23.
[44] Ogawara, Y., Kishishita, S., Obata, T., Isazawa, Y., Suzuki, T., Tanaka, K., Masuyama, N. and Gotoh, Y. (2002). Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem 277, 21843-50.
[45] Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P. and Pandolfi, P.P. (2005). Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179-93.
[46] Oshiro, N., Yoshino, K., Hidayat, S., Tokunaga, C., Hara, K., Eguchi, S., Avruch, J. and Yonezawa, K. (2004). Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 9, 359-66.
[47] Sarbassov, D.D., Ali, S.M., Sengupta, S., Sheen, J.H., Hsu, P.P., Bagley, A.F., Markhard, A.L. and Sabatini, D.M. (2006). Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22, 159-68.
[48] Beuvink, I. et al. (2005). The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell 120, 747-59.
[49] Li, M., Chen, D., Shiloh, A., Luo, J., Nikolaev, A.Y., Qin, J. and Gu, W. (2002). Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416, 648-53.
[50] Zhang, Y., Jamaluddin, M., Wang, S., Tian, B., Garofalo, R.P., Casola, A. and Brasier, A.R. (2003). Ribavirin treatment up-regulates antiviral gene expression via the interferon-stimulated response element in respiratory syncytial virus-infected epithelial cells. J Virol 77, 5933-47.
[51] Muller, M. et al. (1998). p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 188, 2033-45.
[52] Fang, J., Meng, Q., Vogt, P.K., Zhang, R. and Jiang, B.H. (2006). A downstream kinase of the mammalian target of rapamycin, p70S6K1, regulates human double minute 2 protein phosphorylation and stability. J Cell Physiol 209, 261-5.
[53] Chen, L. and Pankiewicz, K.W. (2007). Recent development of IMP dehydrogenase inhibitors for the treatment of cancer. Curr Opin Drug Discov Devel 10, 403-12.
[54] Nair, V. and Shu, Q. (2007). Inosine monophosphate dehydrogenase as a probe in antiviral drug discovery. Antivir Chem Chemother 18, 245-58.
[55] Panasiuk, A., Prokopowicz, D. and Dzieciol, J. (2005). p53 protein expression in chronic hepatitis C; effect of interferon alpha 2b therapy. Hepatogastroenterology 52, 1176-9.
[56] Dharel, N. et al. (2008). Potential contribution of tumor suppressor p53 in the host defense against hepatitis C virus. Hepatology 47, 1136-49.
[57] Ishida, H., Li, K., Yi, M. and Lemon, S.M. (2007). p21-activated kinase 1 is activated through the mammalian target of rapamycin/p70 S6 kinase pathway and regulates the replication of hepatitis C virus in human hepatoma cells. J Biol Chem 282, 11836-48.
[58] Kaur, S. et al. (2008). Role of the Akt pathway in mRNA translation of interferon-stimulated genes. Proc Natl Acad Sci U S A 105, 4808-13.
[59] Duong, F.H., Christen, V., Berke, J.M., Penna, S.H., Moradpour, D. and Heim, M.H. (2005). Upregulation of protein phosphatase 2Ac by hepatitis C virus modulates NS3 helicase activity through inhibition of protein arginine methyltransferase 1. J Virol 79, 15342-50.
[60] Nien, W.L., Dauphinee, S.M., Moffat, L.D. and Too, C.K. (2007). Overexpression of the mTOR alpha4 phosphoprotein activates protein phosphatase 2A and increases Stat1alpha binding to PIAS1. Mol Cell Endocrinol 263, 10-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45499-
dc.description.abstractRibavirin在臨床上已經運用於治療許多病毒感染的疾病,且有不錯的效果。而在C型肝炎病毒的治療上,與干擾素-α合併治療的效果能使C型肝炎病人的治療效果大幅改善。Ribavirin先前雖然有報告指出其可以有抗血管新生(anti-angiogenesis)及抑制IMPDH活性的能力,然而其干擾素-α抗病毒的作用機轉迄今未明。在此報告中發現,ribavirin經由誘導mTOR及p53的活性,並進而增加干擾素-α所調控抗病毒基因的產生。活化p53之表現,主要在於經由活化mTOR而影響p53的活性。Ribavirin經由活化mTOR進而影響p53的活性,可以有效的被rapamycin 及knockdown mTOR 所抑制。Ribavirin活化p53的結果,可以經由抑制mdm2及HAUSP的相互作用,得以使得活化p53蛋白質穩定的能力延長,並減少mdm2蛋白質穩定的能力。Ribavirin經由活化p53而使得干擾素-α訊息傳遞的重要組成成份IRF9 mRNA及蛋白質的增加。此結果使得在ribavirin與干擾素-α合併處理下的干擾素-α所調控抗病毒基因的mRNA及蛋白質均大幅度的增加。此結果使得mTOR及p53的活性在ribavirin與干擾素-α合併處理下,對於干擾素-α所調控的訊息傳遞上扮演很重要的角色。而這也可能是ribavirin與干擾素-α合併治療C型肝炎病人,進而達到改善C型肝炎病人的治療效果的成因之一。zh_TW
dc.description.abstractCellular mechanisms involving the enhancement of interferon (IFN) signaling by ribavirin remain poorly understood. Here, we identified a novel role of ribavirin in the communication between p53 and the mammalian target of rapamycin (mTOR) signaling. Ribavirin activates p53 by stimulating mTOR and promoting the interaction between mTOR and p53. In addition, ribavirin stabilizes p53 protein by ablation of the interaction between herpesvirus-associated ubiquitin-specific protease (HAUSP) and mdm2. Activated p53 stimulates the transcription of IFN regulatory factor 9 and subsequently enhances IFN signaling. Furthermore, ribavirin-induced activation of mTOR and p53 enhances IFN-dependent signaling for the IFN-α/ribavirin combined treatment. We conclude that ribavirin enhances activities of mTOR and p53, which may account for its antiviral and antitumor effects.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:23:38Z (GMT). No. of bitstreams: 1
ntu-98-D90448001-1.pdf: 33792714 bytes, checksum: 795a753c32f11cb25326d739eeed8caf (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents論文口試委員審定書………………………………………………………………… 1
序言或謝辭…………………………………………………………………………… 2
目錄 ………………………………………………………………………………….. 3
中文摘要……………………………………………………………………………… 4
Abstract………………………………………………………………………………... 5
Introduction……………………………………………………………………………. 6
Materials and methods……………………………………………………………….. 9
Results……………………………………………………………………………….. 13
Discussion…………………………………………………………………………… 20
Acknowledgements………………………………………………………………….. 25
References…………………………………………………………………………….. 26
Table 1…..……….……………………………………………………………………. 35
Figures ..………....………………………………………………………………… 36~ 69
dc.language.isoen
dc.subjectmTORzh_TW
dc.subject干擾素-αzh_TW
dc.subjectribavirinzh_TW
dc.subjectp53zh_TW
dc.subjectribavirinen
dc.subjectmTORen
dc.subjectp53en
dc.subjectIFN-αen
dc.titleRibavirin經由活化mTOR及p53活性加強干擾素α的訊息zh_TW
dc.titleRibavirin Enhances Interferon Signaling via Stimulation of mTOR and p53 Activitiesen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree博士
dc.contributor.oralexamcommittee黃麗華(Lih-Hwa Hwang),李芳仁(Fang-Jen Lee),劉俊人(Chun-Jen Liu),葉秀慧(Shiou-Hwei Yeh)
dc.subject.keyword干擾素-α,ribavirin,mTOR,p53,zh_TW
dc.subject.keywordribavirin,mTOR,p53,IFN-α,en
dc.relation.page69
dc.rights.note有償授權
dc.date.accepted2009-09-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved