請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45497完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳榮河(Rong-Her Chen) | |
| dc.contributor.author | Jia-Haur Liu | en |
| dc.contributor.author | 劉家豪 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:23:31Z | - |
| dc.date.available | 2012-08-19 | |
| dc.date.copyright | 2011-08-19 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-17 | |
| dc.identifier.citation | 1.王瑞鴻 (2006),「張力作用對織物開孔徑之變化及其過濾特性之探討」,碩士論文,私立淡江大學土木工程學研究所。
2.李豐博、蘇吉立 (2000),「地工織物在海岸與港灣工程之應用研究」,交通部運輸研究所港灣技術研究中心。 3.吳朝賢 (1990),「地工織物過濾功能之應用考量」,地工技術雜誌,第32期,第41-45頁。 4.吳朝賢 (1999),「地工織物過濾設計探討」,地工技術雜誌,第71期,第29-42頁。 5.胡寶麟 (1999),「從AASHTO M 288-96規範談地工織物之設計與應用」,地工技術雜誌,第71期,第5-12頁。 6.許智育 (2006),「雙向反覆水流試驗評估土壤-地工織物過濾系統」,碩士論文,國立台灣大學土木工程學研究所。 7.陳榮河 (2006),「地工合成材加勁護岸之穩定性研究」,行政院國家科學委員會補助專題研究計畫成果報告。 8.鍾文彬 (2007),「地工織物在雙向水流下之過濾表現與試驗後之微觀」,碩士論文,國立台灣大學土木工程學研究所。 9.謝恩賜 (2005),「土壤-地工織物過濾系統於載重及細料改變時受雙向週期水流影響之探討」,碩士論文,國立台灣大學土木工程學研究所。 10.謝啓萬 (1999),「地工合成材料常用檢測法簡介」,地工技術雜誌,第71期,第13-28頁。 11.顏允威 (2001),「級配開孔率對土壤-地工不織布過濾行為之影響」,碩士論文,私立淡江大學土木工程學研究所。 12.ASTM D4491-92 (1992), “Standard Test Method for Water Permeability of Geotextile by Permittivity.” Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, Pennsylvania, USA. 13.ASTM D4491-92 (1992), “Standard Test Method for Water Permeability of Geotextile by Permittivity.” Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, Pennsylvania, USA. 14.ASTM D4751-04, “Standard Test Method for Determining Apparent Opening Size of a Geotextile.” Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, Pennsylvania, USA. 15.ASTM D5101-90 (1992), “Standard Test Method for Measuring the Soil-Geotextile System Clogging Potential by the Gradient Ratio.” Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, Pennsylvania, USA. 16.ASTM D5199-01, “Standard Test Method for Measuring the Nominal Thickness of Geosynthetics.” Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, Pennsylvania, USA. 17.ASTM D7178-06, “Standard Practice for Determining the Number of Constrictions “m” of Nonwoven Geotextiles as a Complementary Filtration Property.” Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, Pennsylvania, USA. 18.Aydilek, A. H., Oguz, S. H., and Edil, T. B. (2005). “Constriction Size of Geotextile Filters.” Journal of Geotechnical and Geoenvironmental Engineering Division, ASCE, Vol.131, pp. 28-38. 19.Bouthot, M., Vermeersch, O.G., Blond, E. and Mlynarek, J. (2002). “The Number of Constrictions Concept as a Mean to Predict the Filtration Behavior of Nonwoven Geotextile Filters.” Proceedings of the Seventh International Conference on Geosynthetics, Nice, France. 20.Cazzuffi, D., Mazzucato, A., Moraci, N., and Tondello, M. (1999). “A New Test Apparatus for the Study of Geotextiles Behaviour as Filters in Unsteady Flow Conditions: Relevance and Use.” Geotextiles and Geomembranes, Vol. 17, pp. 313-329. 21.Chen, R. H., Ho, C. C. and Hsu, C. Y. (2008). “The Effect of Soil Fine Content on the Filtration Characteristics of Geotextile under Cyclic Flows.” Geosynthetics International, Vol. 15, pp. 95-106. 22.Chen, R. H., Ho, C. C., and Chung, W. B. (2008). “The Filtration Mechanism and Micro-observation of Soil-geotextile System under Cyclic Flows.” Journal of GeoEngineering, Vol. 3, pp. 101-112. 23.Chew, S. H., Tian, H., Tan, S. A. and Karunaratne, G. P. (2003). “Erosion Stability of Punctured Geotextile Filters Subjected to Cyclic Wave Loadings – A Laboratory Study.” Geotextiles and Geomembranes, Vol. 21, pp. 221-239. 24.Faure, Y. H., Ho, C. C., Chen, R. H., Le Lay M., and Blaza J. (2010). “A Wave Flume Experiment for Studying Erosion Mechanism of Revetments Using Geotextiles.” Geotextiles and Geomembranes, Vol. 28, pp. 360-373. 25.Giroud, J. P. (1996). “Granular filters and geotextile filters.” Proceeding of Geofilters’96, Montréal, Canada, pp. 565-680. 26.Ho, C. C. (2007). “The Erosion Behavior of Revetment Using Geotextile.” Ph.D. Dissertation, National Taiwan University (Taiwan) and Joseph Fourier University of Grenoble (France). 27.Ho, C. C., Faure, Y. H., and Chen, R. H. (2010). “Studying Soil Erosion Behavior and Deformation of Geotextile-bag under Wave Action-A Wave Flume Laboratory Experiment.” The 1st International GSI-Asia Geosynthetics Conference, Taichung, Taiwan. 28.Ho, C. C., Chen, R. H. (2010). “Effect of the Characteristic Opening Size of Geotextile on the Wash-out Soils in Cyclic Flow Tests.” International Symposium, Exhibition, and Short Course on Geotechnical and Geosynthetics Engineering:Challenges and Opportunities on Climate Change, Bangkok, Thailand. 29.Koerner, R.M. (2005). Designing With Geosynthetics, Prentice Hall, Englewood Cliffs. 30.Lafleur, J. (1999). “Selection of Geotextiles to Filter Broadly Graded Cohesionless Soils.” Geotextiles and Geomembranes, Vol. 17, pp. 299-312. 31.Luettich, S. M., Giroud, J. P. and Bachus R. C. (1992). “Geotextile Filter Design Guide.” Geotextile and Geomembranes, Vol. 11, pp. 355-370. 32.Mlynark, J.B.L., Andrel, R. and Gilles, B. (1991). “Soil Geotextile System Interaction.” Geotextiles and Geomembranes, Vol. 10, pp. 161-176. 33.Palmeria, E. M., Gardoni, M. G. (2002). “Drainage and Filtration Properties of Non-woven Geotextiles Under Confinement Using Different Experimental Techniques.” Geotextiles and Geomembranes, Vol. 20, pp. 97-115. 34.Rollin, A., Andrel, L. and Lombard, G. (1988). “Mechanisms Affecting Long-Term Filtration Behavior of Geotextile.” Geotextiles and Geomembranes, Vol. 7, pp. 119-145. 35.Shan, H. Y., Wang, W. L., and Chou, T. C. (2001). “Effect of Boundary Conditions on the Hydraulic Behavior of Geotextile Filtration System.” Geotextiles and Geomembranes, Vol. 19, pp. 509-527. 36.Williams, N.D., Abouzakhm, M.A. (1989). “Evaluation of Geotextile-Soil Filtration Characteristics Using the Hydraulic Conductivity.” Geotextiles and Geomembranes, Vol. 8, pp. 1-26. 37.Wu, C.S., Hong, Y. S., Chang, B.S., and Yan, Y.W. (2006). “Soil-Nonwoven Geotextile Filtration Behavior Under Contact with Drainage Materials.” Geotextiles and Geomembranes, Vol. 24, pp. 1-10. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45497 | - |
| dc.description.abstract | 河川護岸的治理可採用兼具安全性及對生態友善的地工合成材(geosynthetics),如將地工織物鋪設於護岸表面,使其與土壤互制,以形成土壤-地工織物過濾系統。在土壤-地工織物過濾系統的設計上,系統除了要具備良好的透水性,亦需要有適當的阻留能力,以避免土壤流失造成護岸的破壞。當此系統穩定形成時,便可達到抗沖蝕及過濾的功能,進而有效地穩定河岸的邊坡。
目前相關的研究大多採用單向水流的試驗,然而河岸的水利條件較接近雙向循環水流的作用,故本研究採用雙向循環水流試驗儀,進行一系列的室內試驗,探討五種地工織物對現地土壤的過濾行為。試驗材料選用細粒料含量大於20%的大漢溪沿岸土壤,及不同特徵開孔徑及厚度的不織布。試驗中,將含地工織物之土壤試體於覆土壓力70 kPa作用下,分別受到不同週期水流(600、300、150、75 sec/cycle)的反覆作用,同時量測試體內之孔隙水壓力變化及試體頂部的歷時沉陷;試驗後並收集被濾出的土壤,進行粒徑分佈試驗,以探討系統之過濾機制是否有效。 試驗結果顯示: (1)從濾出土壤的重量及粒徑分析得知,本試驗採用的不織布皆有一定的阻留能力,並不致造成試體明顯的沉陷及土壤的濾出;(2)細粒料含量高的土壤,其顆粒易受水流作用而移動,使得水壓力變化較不穩定,尤其是水流週期越短,變化趨勢愈明顯;(3)於流速較快的水流作用下,細顆粒的移動較明顯,使得顆粒重組及土體結構改變,導致發生較大的沉陷;(4)厚度較厚的不織布,對於削減試體受水流擾動的影響有較大的作用。 | zh_TW |
| dc.description.abstract | The use of geosynthetics for revetment protection is an environmentally friendly method. For example, the geotextiles lying on the revetment will interact with the soil to form a soil-geotextile filtration system. In a proper designed system, it must have the capabilities of good drainage and preventing the on-site soil from being washed away.
Most of the researches so far have conducted tests under uni-directional flow condition. In real condition, a flow goes into-and-out of a revetment due to water table change is more like bi-directional and cyclic than uni-directional. Hence, this research utilized a bi-directional flow apparatus and performed a series of tests on five non-woven geotextiles to test their filtration function. The soil, containing more than 20% of fines, was obtained from the bank of Tan-Han creek. The geotextiles for testing have different characteristic opening sizes and thicknesses. When tested, specimens of soil with geotextiles were under an overburden pressure of 70 kPa and various flow periods, ranging from 600 to 75 sec/cycle. During each test, the pore water pressure in the specimen and the settlement at the top of the specimen were measured. After each test, the soil washed away from the specimen was collected for analyzing its grain size distribution in order to understand if the filtration system was effective. The test results are listed as follows: (1) from the analysis of grain size distribution and the weight of collected soil, it is known that all the geotextiles tested functioned well; (2) in the soil with high fines content, the variation of pore water pressure was not very stable due to the movement of fines. This phenomenon was obvious when the flow period was short; (3) under fast flows, the movement of fines induced rearrangement of soil structure and lead to apparent settlement; (4) the thicker geotextiles could reduce the disturbance from the flow than the thinner. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:23:31Z (GMT). No. of bitstreams: 1 ntu-100-R98521121-1.pdf: 5400531 bytes, checksum: ec808f8f17e4b0f8da217d2622ce2646 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 IV 表目錄 VI 圖目錄 VIII 符號表 XII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法 2 1.3 研究內容 2 第二章 文獻回顧 5 2.1 地工織物性質及其應用 5 2.1.1 地工織物有效開孔徑 5 2.1.2 地工織物厚度 6 2.1.3 地工織物正向透水率 6 2.2 過濾/阻塞機制與準則 7 2.2.1 過濾/阻塞機制 8 2.2.2 過濾阻留準則 10 2.3 過濾與排水影響因子 12 2.4 雙向循環水流試驗 14 第三章 試驗設備與研究方法 32 3.1 試驗目的與規劃 32 3.2 試驗材料與性質 33 3.2.1 土壤性質 33 3.2.2 地工織物性質 33 3.2.3 滲透與阻留準則分析及檢核 34 3.3 試驗儀器介紹 35 3.4 試驗步驟 39 第四章 試驗結果分析與綜合討論 60 4.1 各組試驗結果分析及比較 60 4.1.1 T-01(NW1)試驗結果 60 4.1.2 T-02(NW2)試驗結果 63 4.1.3 T-03(NW3)試驗結果 65 4.1.4 T-04(NW4)試驗結果 67 4.1.5 T-05(NW5)試驗結果 70 4.1.6 H-04(NW4)試驗結果 71 4.2 試驗後之織物微觀 74 4.3 綜合討論 75 第五章 結論與建議 121 5.1 結論 121 5.1.1 孔隙水壓之變化 121 5.1.2 試體沉陷量 122 5.1.3 試體粒料比例之變化 122 5.1.4 土壤濾出量 122 5.1.5 土壤-地工織物系統之穩定 123 5.2 建議 123 參考文獻 124 | |
| dc.language.iso | zh-TW | |
| dc.subject | 護岸 | zh_TW |
| dc.subject | 地工織物 | zh_TW |
| dc.subject | 過濾 | zh_TW |
| dc.subject | 特徵開孔徑 | zh_TW |
| dc.subject | 雙向循環水流 | zh_TW |
| dc.subject | revetment | en |
| dc.subject | bi-directional flow | en |
| dc.subject | characteristic opening size | en |
| dc.subject | filtration | en |
| dc.subject | geotextiles | en |
| dc.title | 以雙向水流探討五種地工織物之過濾行為 | zh_TW |
| dc.title | The Filtration Behavior of Five Geotextiles Under Cyclic Flows | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳朝賢(Cho-Sen Wu),何嘉浚(Chia-Chun Ho) | |
| dc.subject.keyword | 地工織物,過濾,特徵開孔徑,雙向循環水流,護岸, | zh_TW |
| dc.subject.keyword | geotextiles,filtration,characteristic opening size,bi-directional flow,revetment, | en |
| dc.relation.page | 129 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 5.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
