請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45495完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林致廷 | |
| dc.contributor.author | Chih-Hao Lin | en |
| dc.contributor.author | 林志豪 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:23:24Z | - |
| dc.date.available | 2014-10-28 | |
| dc.date.copyright | 2009-10-28 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-09-22 | |
| dc.identifier.citation | Reference
[ 1 ] Barry Schweitzer, et al., “Measuring proteins on microarrays”, Current Opinion in Biotechnology, 2002, 13, 14-19 [ 2 ] Heng Zhu, et al., “Protein arrays and microarrays,” Current Opinion in Chemical Biology, 2001, 5, 40-45 [ 3 ] A.S. Blawas, et al., “Review: protein patterning”, Biomaterials, 1998, 19, 595-609 [ 4 ] Wiesner A., “Detection of tumor markers with ProteinChip technology,” Current Pharmaceutical Biotechnology, 2004, 5, 45-67 [ 5 ] M. Veiseh, et al., “Guided cell patterning on gold-silicon dioxide substrates by surface molecular engineering,” Biomaterials, 2004, 24, 3315-3324 [ 6 ] Y.C. Wang, et al., “Micropatterning of proteins and mammalian cells on biomaterials,” The FASEB Journal, 2004, 18, 525-527 [ 7 ] E.A. Roth, et al., “Inkjet printing for high-throughput cell patterning,” Biomaterials, 2004, 25, 3707-3715 [ 8 ] Sanjana NE, et al., “A fast flexible ink-jet printing method for patterning dissociated neurons in culture,” Journal of Neuroscience Methods, 2004, 136, 151-163 [ 9 ] A. Bernard, “Microcontact Printing of Proteins,” Advanced Materials, 2000, 14, 1067-1070 [ 10 ] Lee KB, et al., “Protein nanoarrays generated by Dip-Pen nanolithography,” Science, 2002, 295, 1702-1705 [ 11 ] Dirk R Albrecht, et al., “Probing the role of multicellular organization in three-dimensional microenvironments,” Nature methods, 2006, 3, 369-375 [ 12 ] Nadica Ivosevic, et al., “Spreading and detachment of organic droplets at an electrified interface,” Langmuir, 1998, 14, 231-234 [ 13 ] F Mugele, et al., “Electrostatic stabilization of fluid microstructures,” Applied Physics Letters, 2002, 81, 2303-2305 [ 14 ] F Mugele, et al., “Electrowetting: aconvenient way to switchable wettability patterns,” J. Phys.: Condens. Matter, 17 (2005) S559-S576 [ 15 ] F Mugele, et al., “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter, 2005, 17, R705-R774 [ 16 ] Kwan Hyoung Kang, “How Electrostatic Fields Change Contact Angle in Electrowetting,” Langmuir, 2002, 18, 10318-10322 [ 17 ] Hyejin Moon, et al., “Low voltage electrowetting-on-dielectric,” Journal of Applied Physics, 2002, 92, 4080-4087 [ 18 ] Kwan Hyoung Kang, “Wetting tension due to columbic interaction in chargerelated wetting phenomena,” Langmuir, 2003, 19, 5407-5412 [ 19 ] T B Jones, “An electromechanical interpretation of electrowetting,” J. Micromech. Microeng., 2005, 15, 1184-1187 [ 20 ] Shih-Kang Fan, et al., “Asymmetric electrowetting—moving droplets by a square wave,” Lab Chip, 2007, 7, 1330-1335 [ 21 ] Chao Tung Fan, et al., “Electrically Programmable Surfaces for Configurable Patterning of Cells,” Advanced Materials, 2008, 20, 1418-1423 [ 22 ] Chao Tung Fan, et al., “Protein Pattern Assembly by Active Control of a Triblock Copolymer Monolayer,” NanoLetters, 2006, vol. 6, No.12, 2763-2767 [ 23 ] Watson Loh, “Block copolymer micelles,” Encyclopedia of Surface and Colloid Science, Marcel Dekker, Inc., 2002 [ 24 ] S. Govender, et al., “A robust approach to studying the adsorption of Pluronic F108 on nonporous membranes,” Journal of Colloid and Interface Science, 282, 306-313 [ 25 ] D. Anderson, et al., “Evaluation of the permeability and blood-compatibility properties of membranes formed by physical interpenetration of chitosan with PEO/PPO/PEO triblock copolymers,” Journal of Applied Polymer Science, 2001, 80, 1274-1284 [ 26 ] J. D. Andrade, et al., “Adsorption of complex proteins at interfaces, ” Pure & Appl. Chem., 1992, 64, 1771-1781 [ 27 ] Kerson Huang, “Statistical Mechanics,” 1987 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45495 | - |
| dc.description.abstract | 蛋白質塗佈是將蛋白質或生物分子固定在特定空間上,此技術是生物感測晶片發展的基礎,利用微奈米製程技術,可以方便製作出微奈米尺寸的元件。塗佈的目標物可為蛋白質、DNA等各種生物分子。蛋白質塗佈可應用的範圍極廣,包過基因工程、癌症研究、藥物研發、細胞生長、組織工程等等。
現有的蛋白質塗佈技術中,很難同時兼顧解析度並避開在蛋白質塗佈中直接對蛋白質造成的物理性或化學性傷害。為了克服此問題,本研究利用電致性的概念,提供了快速且高解析度的蛋白質塗佈技術。同時也不會造成蛋白質結構變型,以保持其活性,提高其應用之可行性。 | zh_TW |
| dc.description.abstract | Bio-microsystem creates the opportunity of on-chip screening, biodetection, and cell monitoring for emerging bio-diagnostic applications and innovative bio-scientific discovery. One of the fundamental techniques to achieve these bio-devices and bio-microsystem is the protein patterning. Traditionally, this is achieved by microfabrication techniques such as photolithography technology, inkjet printing and micro-contact printing. However, most of the existing patterning methods require complicated processes, and hardly achieve submicron protein patterns. In this thesis, we have developed a protein patterning technique by controlling the surface electric potential. Besides, we also develop the statistical model to describe the protein patterning results. Based on these results, the insight understanding of the interaction between protein and the device surface has been established. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:23:24Z (GMT). No. of bitstreams: 1 ntu-98-R95943175-1.pdf: 1881926 bytes, checksum: 204030d35d10921f73e4aee9ed6666a6 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Table of Contents
Abstract vi Table of Contents vii List of figures xi Chapter 1: Introduction 1 Motivation 1 Thesis outline 2 Chapter 2: Review of related work 3 Photolithography 3 Inkjet printing 6 Micro-contact printing 9 Chapter 3: Modeling of protein patterning 12 Electrowetting -On-Dielectrics 12 Pluronic Tri-block Copolymer 18 Hypothesis 19 The operational principle of the device and initial result 22 Introduction to the canonical ensemble [ 27 ] 25 Introduction to the grand canonical ensemble [ 27 ] 30 Statistical model of protein patterning 35 Chapter 4: The device for patterning proteins: Design, Fabrication, and Results 45 Device conceptual design 45 Surface (parylene) annealing 47 Device Fabrication Processes 50 Experimental protocol 52 Experimental results 53 Chapter 5: Conclusion 62 Appendix 1 64 Appendix 2 67 Reference 69 List of figures Fig. 2. 1: Protein patterning made by photolithography technique [ 3 ] 5 Fig. 2. 2: The conceptual scheme of ink-jet printer [ 8 ] 7 Fig. 2. 3: The fundamental idea of protein patterns [ 8 ] 7 Fig. 2. 4: The experimental results of ink-jet printing technique [ 8 ] 8 Fig. 2. 5: The scheme of fabrication of a stamp and protein patterns [ 9 ] 10 Fig. 2. 6: An AFM tip stamp for protein nanoarrays [ 10 ] 11 Fig. 3. 2: The dash circle is the initial state (without applied-voltage). While applying voltage, the dash circle becomes to solid ellipse. [ 4 ] 13 Fig. 3. 3: A conductive droplet on the dielectric surface with the voltage dropped V across it. 15 Fig. 3. 5: The chemical formula for Pluronic, where “a” is the number of PEO and “b” is the number of PPO [ 14 ]. 19 Fig. 3. 6: Four different binding interactions between proteins and four different surfaces [ 15 ]. 20 Fig. 3. 7: Proteins are repelled from the hydrophobic surface. 21 Fig. 3. 8: The initial experimental result. 25 Fig. 3. 9: The mechanism of the device. 36 Fig. 3. 10: The scheme of the device. 41 Fig. 4. 1: The conceptual scheme of device. 46 Fig. 4. 2: PDS2010 47 Fig. 4. 3: Annealing in 110 oC. 49 Fig. 4. 4: Annealing in 110 oC. 49 Fig. 4. 5: The fabrication process of the device. 51 Fig. 4. 6: Experimental protocol. 53 Fig. 4. 7: Sub-micron protein pattern. 55 Fig. 4. 8: The fluorescent intensity of different applied voltage. (A) and (C) are the initial fluorescence before applying voltage across the electrodes. (B) and (D) are the final fluorescence after applying 20volt and 35volt. 57 | |
| dc.language.iso | en | |
| dc.subject | 蛋白質塗佈技術 | zh_TW |
| dc.subject | protein patterning techniques | en |
| dc.title | 電致性蛋白質塗佈技術與理論分析 | zh_TW |
| dc.title | Statistical-Mechanics of Protein Patterning Driven by Surface Potential Modulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭柏齡,林頌然 | |
| dc.subject.keyword | 蛋白質塗佈技術, | zh_TW |
| dc.subject.keyword | protein patterning techniques, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-09-23 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
