Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45450
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊照彥
dc.contributor.authorYao-Tien Kuoen
dc.contributor.author郭耀天zh_TW
dc.date.accessioned2021-06-15T04:20:50Z-
dc.date.available2012-12-29
dc.date.copyright2009-12-29
dc.date.issued2009
dc.date.submitted2009-10-22
dc.identifier.citation[1] Bird, G. A. (1994) Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press Oxford.
[2] Bhatnagar, P. L., Gross, E. P. and Krook, M. (1954) A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems, Physical Review, 94, 511.
[3] Cosgrove, J. A., Buick, J. M., Tonge, S. J., Munro, C. G., Greated, C. A. and Campbell, D. M. (2003) Application of the Lattice Boltzmann Method to Transition in Oscillatory Channel Flow, Journal Physics A, 36, 2609.
[4] Guo, Z., Han, H., Shi, B. and Zheng, C. (2009) Theory of the Lattice Boltzmann Equation:Lattice Boltzmann Model for Axisymmetric Flows, Physical Review E, 79, 046708.
[5] Guo, Z., Shi, B. C. and Zheng, C. G. (2007) An Extended Navier-Stokes Formulation for Gas Flows in the Knudsen Layer Near a Wall, Europhysics Letters, 80, 24001.
[6] Guo, Z. (2006) Physical Symmetry,Spatial Accuracy,and Relaxation Time of the Lattice Boltzmann Equation for Microgas Flows, Journal of Applied Physics, 99, 074903.
[7] Higuera, F. and Jimenez, J. (1989) Boltzmann Approach to Lattice Gas Simulations, Europhysics Letters, 9, 663.
[8] Higuera, F., Succi, S. and Benzi, R. (1989) Lattice Gas Dynamics with Enhanced Collisions, Europhysics Letters, 9, 345.
[9] Halliday, I., Hammond, L. A., Care, C. M. and Stevens, A. (2001) Lattice Boltzmann Equation Hydrodynamics, Physical Review E, 64, 011208.
[10] He, X. and Luo, L. S. (1997) Theory of the Lattice Boltzmann Method:From the Boltzmann Equation to the Lattice Boltzmann Equation, Physical Revier E, 56, 6811.
[11] He, X. and Luo, L. S. (1997) Lattice Boltzmann Model for the Incompressible Navier-Stokes Equation, Journal of Statistical Physics, 88, 927.
[12] Knudsen, M. (1934) The Kinetic Theory of Gases, London:Methuen Monographs, 1934.
[13] Lim, C. Y., Shu, C., Niu, X. D. and Chew, Y. T. (2002) Application of Lattice Boltzmann Method to Simulate Microchannel Flows, Physics of Fluids, 14, 7.
[14] Landau, L. D. and Lifschitz, E. M. (1987) Fluid Mechanics, 2nd edn., Pergamon Oxford.
[15] Lee, T. S., Huang, H. and Shu, C. (2006) An Axisymmetric Incompressible Lattice Boltzmann Model for Pipe Flow, International Journal of Modern Physics C, 49, 99.
[16] Lee, T. S., Huang, H. and Shu, C. (2005) An Axisymmetric Incompressible Lattice BGK Model for Simulation of the Pulsatile Flow in a Circular Pipe, International Journal for Numerical Methods in Fluids, 49, 99.
[17] Lu, Z. Y., Liao, Y., Qian, D. Y., Mclaughlin, J. B., Derksen, J. J. and Kontomaris, K. (2002) Large Eddy Simulations of a Stirred Tank Using the Lattice Boltzmann Method on a Nonuniform Grid, Journal of Computational Physics, 181, 675.
[18] Lin, Z., Fang, H. and Tao, R. (1996) Improve Lattice Boltzmann Model for Incompressible Two-Dimensional Steady Flows, Physical Review E, 54, 6323.
[19] McNamara, G. R. and Zanetti, G. (1988) Use of the Boltzmann Equation to Simulate Lattice Gas Automata, Physical Review Letters, 61, 2332.
[20] Qian, T. H., D’Humieres, D. and Lallemand, P. (1992) Lattice BGK Models for Navier-Stokes Equation, Europhysics Letters, 17, 479.
[21] Reis, T. and Phillips, T. N. (2007) Modified Lattice Boltzmann Model for Axisymmetric Flows, Physical Review E, 75, 056703.
[22] Reis, T. and Phillips, T. N. (2008) Numerical Validation of a Consistent Axisymmetric Lattice Boltzmann Model, Physical Review E, 77, 026703.
[23] Shan, X., Yuan, X. F. and Chen, H. (2006) Kinetic Theory Representation of Hydrodynamics:a Way Beyond the Navier-Stokes Equation, Journal of Fluid Mechanics, 550, 413-441.
[24] Shu, C., Liu, N. and Chew, Y. T. (2007) A Novel Immersed Boundary Velocity Correction-Lattice Boltzmann Method and Its Application to Simulate Flow Past A Circular Cylinder, Journal of Computational Physics, 226, 1607.
[25] Yang, J. Y. and Hung, L. H. (2009) Lattice Uehling-Uhlenbeck Boltzmann -Bhatnagar-Gross-Krook Hydrodynamics of Quantum Gases, Physical Review E, 79, 056708.
[26] Zhou, J. G. (2008) Axisymmetric Lattice Boltzmann Method, Physical Review E, 78, 036701.
[27] Zhang, Y., Qin, R. and Emerson, D. R. (2005) Lattice Boltzmann Simulation of Rarefied Gas Flows in Microchannels, Physical Review E, 71, 047702.
[28] Zhou, Y., Zhang, R., Staroselsky, I., Chen, H., Kim, W. T. and Jhon, M. S. (2006) Simulation of Micro- and Nano-scale Flows Via the Lattice Boltzmann Method, Physica A: Statistical Mechanics and Its Applications, 362(1), 68.
[29] Zou, Q. and He, X. (1997) On Pressure and Velocity Boundary Condition for the Lattice Boltzmann BGK Model, Physics of Fluids, 9, 1591.
[30] 何雅玲、王勇、李慶 (2009) 格子Boltzmann方法的原理及應用(Lattice Boltzmann Method: Theory and Applications),科學出版社。
[31] 沈青 (2003) 稀薄氣體動力學(Rarefied Gas Dynamics),國防工業出版社。
[32] 郭照立、鄭楚光 (2009) 格子Boltzmann方法的原理及應用(Theory and Applications of Lattice Boltzmann Method),科學出版社。
[33] 謝澤揚 (2007) 聲子熱傳輸與理想量子氣體動力學之高解析算則,國立台灣大學工學院應用力學所博士論文,台北。
[34] 簡士凱 (2007) 晶格波茲曼算則模擬三維蛇行渠道流動特性研究,國立成功大學機械工程學系碩士論文,台南。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45450-
dc.description.abstract在近十年間,格子Boltzmann法(Lattice Boltzmann Method,LBM)已發展成為相當重要的一項研究流體流動的工具。本文的研究中,使用格子Boltzmann法來計算流體在三維軸對稱管流,在不同的Knudsen數,包含了滑移區跟過渡流區,並使用新發展的半古典格子Boltzmann法,來模擬量子氣體。
半古典格子Boltzmann法是利用Uehling-Uhlenbeck Boltzmann-BGK方程式,藉由Hermite多項式展開推導而得到的。根據邊界上的滑移運動,採用了一個調和係數(accommodation coefficient)來模擬氣體在邊界上的交互作用。
不同的Knudsen數,包含了滑移區跟過渡流區中,模擬了三種不同的粒子統計,計算而得到質量流率跟速度分佈曲線,最後順利發現Knudsen minimum現象的存在。由發現Knudsen minimum現象的展現可做為演算法驗證的方式,並和本研究使用量子統計得出結果做為比較。
當流體流過一圓球,球後方會產生漩渦,模擬三種統計下,漩渦的差異;改變雷諾數,比較在相同統計下,漩渦的變化;最後,比較三維軸對稱圓球流與二維圓柱流的結果並且說明三維的減少效應。
zh_TW
dc.description.abstractIn the last decade, Lattice Boltzmann Method, an useful and powerful tool for general fluid flow simulation, has been developed. The three-dimensional axisymmetric pipe flow of gas of arbitrary statistics in the slip and transition regimes as characterized by the Knudsen number are studied using a newly developed semiclassical lattice Boltzmann method.
The semiclassical lattice Boltzmann method is derived by directly projecting the Uehling-Uhlenbeck Boltzmann-BGK equations onto the tensor Hermite polynomials using moment expansion method. To take into account the slip motion at wall surface, the Maxwellian scattering kernel is adopted to model the gas surface interactions with an accommodation coefficient.
The mass flow rates and the velocity profiles are calculated for the three particle statistics over the slip and transition regimes Knudsen numbers. The results indicate that the Knudsen minimum can be captured and distinct characteristics of the effect of quantum statistics can be delineated.
When the fluid flows through a sphere, it will generate vortices behind the sphere. We compare the difference of vortices under the simulation of kinds of statistic models. We change the Reynolds number and compare the change of vortex under the same statistic model. Eventually,we compare the results of three-dimensional axisymmetric sphere flow and two-dimensional circular cylindrical flow and the three-dimensional relieving effect is illustrated.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:20:50Z (GMT). No. of bitstreams: 1
ntu-98-R96543057-1.pdf: 5929271 bytes, checksum: 6a7cb354ecd60366afd875a838494413 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents摘 要 I
Abstract II
圖目錄 V
第一章 緒論 1
1-1 計算流體力學: 1
1-2 格子Boltzmann法簡介 2
1-3 格子Boltzmann法的發展 3
1-4 軸對稱不可壓縮格子Boltzmann模型 4
1-5 本文目的 5
1-6 本文架構 6
第二章Boltzmann方程式 8
2-1 氣體運動理論 (Gas Kinetic Theory) 8
2-2 分布函數 10
2-3 Boltzmann方程式 10
2-4 Boltzmann H定理及Maxwell分布 14
2-5 Maxwell分布 16
2-6 BGK近似 17
2-7 格子Boltzmann方程 18
2-8 格子Boltzmann的速度模型 19
2-9 平衡態分佈函數的Hermite展開 21
第三章 半古典格子Boltzmann法的理論 24
3-1 理想量子氣體動力學 24
3-1-1 理想量子氣體的平衡態分佈函數 24
3-1-2 三種統計 24
3-2 半古典格子Boltzmann方程式 25
3-3 宏觀量的求法 31
3-4 Chapman-Enskog展開 31
第四章 半古典軸對稱格子Boltzmann模型 35
第五章 邊界處理方法與模擬流程 41
5-1 格子Boltzmann方法的邊界條件 41
5-2 模擬流程與收斂條件 49
第六章 模擬結果與討論 52
6-1 軸對稱管流的解析解 52
6-2 模擬流體在圓管內的流動 53
6-3 質量流率 55
6-4 均勻流體經過一圓球 56
6-5 模擬結果 57
6-6 討論 80
第七章 結論與未來展望 84
參考文獻 87
dc.language.isozh-TW
dc.subject軸對稱&#63946zh_TW
dc.subject格子Boltzmann 法zh_TW
dc.subject半古典格子Boltzmann 法zh_TW
dc.subjectKnudsen minimumzh_TW
dc.subjectLattice Boltzmann Methoden
dc.subjectKnudsen minimumen
dc.subjectaxisymmetric flowen
dc.subjectSemiclassical lattice Boltzmann methoden
dc.title使用半古典格子波茲曼法之軸對稱不可壓縮流體模擬zh_TW
dc.titleSimulation of Axisymmetric Incompressible Flows Using
Semiclassical Lattice Boltzmann Method
en
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee許長安,黃俊誠,石育炘
dc.subject.keyword格子Boltzmann 法,半古典格子Boltzmann 法,軸對稱&#63946,Knudsen minimum,zh_TW
dc.subject.keywordLattice Boltzmann Method,Semiclassical lattice Boltzmann method,axisymmetric flow,Knudsen minimum,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2009-10-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
5.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved